Search results
Results From The WOW.Com Content Network
The kernel is a subrng, and, more precisely, a two-sided ideal of R. Thus, it makes sense to speak of the quotient ring R / (ker f). The first isomorphism theorem for rings states that this quotient ring is naturally isomorphic to the image of f (which is a subring of S). (Note that rings need not be unital for the kernel definition).
The kernel of a m × n matrix A over a field K is a linear subspace of K n. That is, the kernel of A, the set Null(A), has the following three properties: Null(A) always contains the zero vector, since A0 = 0. If x ∈ Null(A) and y ∈ Null(A), then x + y ∈ Null(A). This follows from the distributivity of matrix multiplication over addition.
In set theory, the kernel of a function (or equivalence kernel [1]) may be taken to be either the equivalence relation on the function's domain that roughly expresses the idea of "equivalent as far as the function can tell", [2] or; the corresponding partition of the domain.
In the mathematics of probability, a transition kernel or kernel is a function in mathematics that has different applications. Kernels can for example be used to define random measures or stochastic processes. The most important example of kernels are the Markov kernels.
In order to define a kernel in the general category-theoretical sense, C needs to have zero morphisms. In that case, if f : X → Y is an arbitrary morphism in C, then a kernel of f is an equaliser of f and the zero morphism from X to Y. In symbols: ker(f) = eq(f, 0 XY) To be more explicit, the following universal property can be used.
The last notation shows where this terminology comes from, and why it is most common in the context of abstract algebra: The difference kernel of f and g is simply the kernel of the difference f − g. Furthermore, the kernel of a single function f can be reconstructed as the difference kernel Eq(f, 0), where 0 is the constant function with ...
In statistics, especially in Bayesian statistics, the kernel of a probability density function (pdf) or probability mass function (pmf) is the form of the pdf or pmf in which any factors that are not functions of any of the variables in the domain are omitted. [1] Note that such factors may well be functions of the parameters of the
Hence, an example of a linear equation would be: [1] = + () (,) As a note on naming convention: i) u(x) is called the unknown function, ii) f(x) is called a known function, iii) K(x,t) is a function of two variables and often called the Kernel function, and iv) λ is an unknown factor or parameter, which plays the same role as the eigenvalue in ...