When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Turing completeness - Wikipedia

    en.wikipedia.org/wiki/Turing_completeness

    In computability theory, a system of data-manipulation rules (such as a model of computation, a computer's instruction set, a programming language, or a cellular automaton) is said to be Turing-complete or computationally universal if it can be used to simulate any Turing machine [1] [2] (devised by English mathematician and computer scientist Alan Turing).

  3. Cellular automaton - Wikipedia

    en.wikipedia.org/wiki/Cellular_automaton

    In the 1980s, Stephen Wolfram engaged in a systematic study of one-dimensional cellular automata, or what he calls elementary cellular automata; his research assistant Matthew Cook showed that one of these rules is Turing-complete. The primary classifications of cellular automata, as outlined by Wolfram, are numbered one to four.

  4. Counter machine - Wikipedia

    en.wikipedia.org/wiki/Counter_machine

    The counter machine models go by a number of different names that may help to distinguish them by their peculiarities. In the following the instruction "JZDEC ( r )" is a compound instruction that tests to see if a register r is empty; if so then jump to instruction I z, else if not then DECrement the contents of r:

  5. Rule 110 - Wikipedia

    en.wikipedia.org/wiki/Rule_110

    Among the 88 possible unique elementary cellular automata, Rule 110 is the only one for which Turing completeness has been directly proven, although proofs for several similar rules follow as simple corollaries (e.g. Rule 124, which is the horizontal reflection of Rule 110). Rule 110 is arguably the simplest known Turing complete system. [2] [5]

  6. Conway's Game of Life - Wikipedia

    en.wikipedia.org/wiki/Conway's_Game_of_Life

    A universal constructor can be built which contains a Turing complete computer, and which can build many types of complex objects, including more copies of itself. [2] On November 23, 2013, Dave Greene built the first replicator in the Game of Life that creates a complete copy of itself, including the instruction tape. [48]

  7. Langton's ant - Wikipedia

    en.wikipedia.org/wiki/Langton's_ant

    Langton's ant is a two-dimensional Turing machine with a very simple set of rules but complex emergent behavior. It was invented by Chris Langton in 1986 and runs on a square lattice of black and white cells. [1] The idea has been generalized in several different ways, such as turmites which add more colors and more states.

  8. One-instruction set computer - Wikipedia

    en.wikipedia.org/wiki/One-instruction_set_computer

    Arithmetic-based Turing-complete machines use an arithmetic operation and a conditional jump. Like the two previous universal computers, this class is also Turing-complete. The instruction operates on integers which may also be addresses in memory. Currently there are several known OISCs of this class, based on different arithmetic operations:

  9. Z3 (computer) - Wikipedia

    en.wikipedia.org/wiki/Z3_(computer)

    The Z3 was demonstrated in 1998 to be, in principle, Turing-complete. [13] However, because it lacked conditional branching, the Z3 only meets this definition by speculatively computing all possible outcomes of a calculation. Thanks to this machine and its predecessors, Konrad Zuse has often been suggested as the inventor of the computer.