When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Formal charge - Wikipedia

    en.wikipedia.org/wiki/Formal_charge

    Formal charges in ozone and the nitrate anion. In chemistry, a formal charge (F.C. or q*), in the covalent view of chemical bonding, is the hypothetical charge assigned to an atom in a molecule, assuming that electrons in all chemical bonds are shared equally between atoms, regardless of relative electronegativity.

  3. Arrow pushing - Wikipedia

    en.wikipedia.org/wiki/Arrow_pushing

    Arrow pushing or electron pushing is a technique used to describe the progression of organic chemistry reaction mechanisms. [1] It was first developed by Sir Robert Robinson.In using arrow pushing, "curved arrows" or "curly arrows" are drawn on the structural formulae of reactants in a chemical equation to show the reaction mechanism.

  4. Oxidation state - Wikipedia

    en.wikipedia.org/wiki/Oxidation_state

    As an example, summing bond orders in the ammonium cation yields −4 at the nitrogen of formal charge +1, with the two numbers adding to the oxidation state of −3: The sum of oxidation states in the ion equals its charge (as it equals zero for a neutral molecule). Also in anions, the formal (ionic) charges have to be considered when nonzero.

  5. Chlorine production - Wikipedia

    en.wikipedia.org/wiki/Chlorine_production

    Chlorine can be manufactured by the electrolysis of a sodium chloride solution (), which is known as the Chloralkali process.The production of chlorine results in the co-products caustic soda (sodium hydroxide, NaOH) and hydrogen gas (H 2).

  6. Electrochlorination - Wikipedia

    en.wikipedia.org/wiki/Electrochlorination

    NaCl + H 2 O + energy → NaOCl + H 2 [citation needed] That is, energy is added to sodium chloride (table salt) in water, producing sodium hypochlorite and hydrogen gas. Because the reaction takes place in an unpartitioned cell and NaOH is present in the same solution as the Cl 2: 2 NaCl + 2 H 2 O → 2 NaOH + H 2 + Cl 2

  7. Chloralkali process - Wikipedia

    en.wikipedia.org/wiki/Chloralkali_process

    The ion-permeable ion-exchange membrane at the center of the cell allows only the sodium ions (Na +) to pass to the second chamber where they react with the hydroxide ions to produce caustic soda (NaOH) (B in figure): [1] Na + + OH − → NaOH The overall reaction for the electrolysis of brine is thus: 2NaCl + 2 H 2 O → Cl 2 + H 2 + 2NaOH

  8. Table of standard reduction potentials for half-reactions ...

    en.wikipedia.org/wiki/Table_of_standard...

    The formal reduction potential makes possible to more simply work with molar or molal concentrations in place of activities. Because molar and molal concentrations were once referred as formal concentrations, it could explain the origin of the adjective formal in the expression formal potential. [citation needed]

  9. Lewis structure - Wikipedia

    en.wikipedia.org/wiki/Lewis_structure

    The formal charge of an atom is computed as the difference between the number of valence electrons that a neutral atom would have and the number of electrons that belong to it in the Lewis structure. Electrons in covalent bonds are split equally between the atoms involved in the bond.