When.com Web Search

  1. Ad

    related to: accuracy and precision statistics calculator test game download

Search results

  1. Results From The WOW.Com Content Network
  2. Evaluation of binary classifiers - Wikipedia

    en.wikipedia.org/wiki/Evaluation_of_binary...

    If not known and calculated from data, an accuracy comparison test could be made using "Two-proportion z-test, pooled for Ho: p1 = p2". Not used very much is the complementary statistic, the fraction incorrect (FiC): FC + FiC = 1, or (FP + FN)/(TP + TN + FP + FN) – this is the sum of the antidiagonal , divided by the total population.

  3. Accuracy and precision - Wikipedia

    en.wikipedia.org/wiki/Accuracy_and_precision

    Accuracy is also used as a statistical measure of how well a binary classification test correctly identifies or excludes a condition. That is, the accuracy is the proportion of correct predictions (both true positives and true negatives ) among the total number of cases examined. [ 10 ]

  4. OpenEpi - Wikipedia

    en.wikipedia.org/wiki/OpenEpi

    OpenEpi is a free, web-based, open source, operating system-independent series of programs for use in epidemiology, biostatistics, public health, and medicine, providing a number of epidemiologic and statistical tools for summary data.

  5. Positive and negative predictive values - Wikipedia

    en.wikipedia.org/wiki/Positive_and_negative...

    The positive predictive value (PPV), or precision, is defined as = + = where a "true positive" is the event that the test makes a positive prediction, and the subject has a positive result under the gold standard, and a "false positive" is the event that the test makes a positive prediction, and the subject has a negative result under the gold standard.

  6. F-score - Wikipedia

    en.wikipedia.org/wiki/F-score

    Precision and recall. In statistical analysis of binary classification and information retrieval systems, the F-score or F-measure is a measure of predictive performance. It is calculated from the precision and recall of the test, where the precision is the number of true positive results divided by the number of all samples predicted to be positive, including those not identified correctly ...

  7. Precision and recall - Wikipedia

    en.wikipedia.org/wiki/Precision_and_recall

    To calculate the recall for a given class, we divide the number of true positives by the prevalence of this class (number of times that the class occurs in the data sample). The class-wise precision and recall values can then be combined into an overall multi-class evaluation score, e.g., using the macro F1 metric. [21]

  8. Accuracy paradox - Wikipedia

    en.wikipedia.org/wiki/Accuracy_paradox

    Even though the accuracy is ⁠ 10 + 999000 / 1000000 ⁠ ≈ 99.9%, 990 out of the 1000 positive predictions are incorrect. The precision of ⁠ 10 / 10 + 990 ⁠ = 1% reveals its poor performance. As the classes are so unbalanced, a better metric is the F1 score = ⁠ 2 × 0.01 × 1 / 0.01 + 1 ⁠ ≈ 2% (the recall being ⁠ 10 + 0 / 10 ...

  9. Category:Accuracy and precision - Wikipedia

    en.wikipedia.org/.../Category:Accuracy_and_precision

    Download QR code; Print/export ... This is a category about statistics, see: ... Pages in category "Accuracy and precision"