Ads
related to: multi digit division worksheet
Search results
Results From The WOW.Com Content Network
Animated example of multi-digit long division. A divisor of any number of digits can be used. In this example, 1260257 is to be divided by 37. First the problem is set up as follows: 37)1260257 Digits of the number 1260257 are taken until a number greater than or equal to 37 occurs. So 1 and 12 are less than 37, but 126 is greater.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
A grid is drawn up, and each cell is split diagonally. The two multiplicands of the product to be calculated are written along the top and right side of the lattice, respectively, with one digit per column across the top for the first multiplicand (the number written left to right), and one digit per row down the right side for the second multiplicand (the number written top-down).
In abstract algebra, given a magma with binary operation ∗ (which could nominally be termed multiplication), left division of b by a (written a \ b) is typically defined as the solution x to the equation a ∗ x = b, if this exists and is unique. Similarly, right division of b by a (written b / a) is the solution y to the equation y ∗ a = b ...
At the Russian School of Mathematics, students begin multi-step problems as early as the first grade, learning to build on previous results to progress towards the solution. In the 1960s, collections of mathematical exercises were translated from Russian and published by W. H. Freeman and Company : The USSR Olympiad Problem Book (1962), [ 8 ...
Subtracting twice the last digit from the rest gives a multiple of 21. (Works because (10a + b) × 2 − 21a = −a + 2b; the last number has the same remainder as 10a + b.) 168: 16 − 8 × 2 = 0. Suming 19 times the last digit to the rest gives a multiple of 21. (Works because 189 is divisible by 21). 441: 44 + 1 × 19 = 44 + 19 = 63 = 21 × 3.