Search results
Results From The WOW.Com Content Network
The velocity and acceleration of a simple harmonic oscillator oscillate with the same frequency as the position, but with shifted phases. The velocity is maximal for zero displacement, while the acceleration is in the direction opposite to the displacement.
In mechanics and physics, simple harmonic motion (sometimes abbreviated as SHM) is a special type of periodic motion an object experiences by means of a restoring force whose magnitude is directly proportional to the distance of the object from an equilibrium position and acts towards the equilibrium position.
The quantum harmonic oscillator is the quantum-mechanical analog of the classical harmonic oscillator. Because an arbitrary smooth potential can usually be approximated as a harmonic potential at the vicinity of a stable equilibrium point , it is one of the most important model systems in quantum mechanics.
Here, is the velocity of the particle, is its damping coefficient ... Phase portrait of a harmonic oscillator showing spreading due to the Langevin Equation.
The simplest description of this decay process can be illustrated by oscillation decay of the harmonic oscillator. Damped oscillators are created when a resistive force is introduced, which is dependent on the first derivative of the position, or in this case velocity.
For the harmonic oscillator, x and p enter symmetrically, so there it does not matter which description one uses. The same equation (modulo constants) results. From this, with a little bit of afterthought, it follows that solutions to the wave equation of the harmonic oscillator are eigenfunctions of the Fourier transform in L 2. [nb 5]
The velocity of each mass element of the spring is directly proportional to length from the ... This is the equation for a simple harmonic oscillator with angular ...
Starting with the example used in the derivation above, the simple harmonic oscillator has the potential energy function = =, where k is the spring constant of the oscillator and ω = 2π/T is the natural angular frequency of the oscillator.