Search results
Results From The WOW.Com Content Network
In statistics, Welch's t-test, or unequal variances t-test, is a two-sample location test which is used to test the (null) hypothesis that two populations have equal means. It is named for its creator, Bernard Lewis Welch , and is an adaptation of Student's t -test , [ 1 ] and is more reliable when the two samples have unequal variances and ...
A possible null hypothesis is that the mean male score is the same as the mean female score: H 0: μ 1 = μ 2. where H 0 = the null hypothesis, μ 1 = the mean of population 1, and μ 2 = the mean of population 2. A stronger null hypothesis is that the two samples have equal variances and shapes of their respective distributions.
An example of Neyman–Pearson hypothesis testing (or null hypothesis statistical significance testing) can be made by a change to the radioactive suitcase example. If the "suitcase" is actually a shielded container for the transportation of radioactive material, then a test might be used to select among three hypotheses: no radioactive source ...
[50] [61] In this book Fisher also outlined the Lady tasting tea, now a famous design of a statistical randomized experiment which uses Fisher's exact test and is the original exposition of Fisher's notion of a null hypothesis. [62] [63]
The Shapiro–Wilk test tests the null hypothesis that a sample x 1, ..., x n came from a normally distributed population. The test statistic is = (= ()) = (¯), where with parentheses enclosing the subscript index i is the ith order statistic, i.e., the ith-smallest number in the sample (not to be confused with ).
How to perform a Z test when T is a statistic that is approximately normally distributed under the null hypothesis is as follows: First, estimate the expected value μ of T under the null hypothesis, and obtain an estimate s of the standard deviation of T. Second, determine the properties of T : one tailed or two tailed.
The following table defines the possible outcomes when testing multiple null hypotheses. Suppose we have a number m of null hypotheses, denoted by: H 1, H 2, ..., H m. Using a statistical test, we reject the null hypothesis if the test is declared significant. We do not reject the null hypothesis if the test is non-significant.
Every experiment may be said to exist only in order to give the facts a chance of disproving the null hypothesis." "...the null hypothesis must be exact, that is free from vagueness and ambiguity, because it must supply the basis of the 'problem of distribution,' of which the test of significance is the solution." "We may, however, choose any ...