Search results
Results From The WOW.Com Content Network
Non-equilibrium thermodynamics is a branch of thermodynamics that deals with systems that are not in thermodynamic equilibrium. Most systems found in nature are not in thermodynamic equilibrium because they are not in stationary states, and are continuously and discontinuously subject to flux of matter and energy to and from other systems.
For thermodynamics, a natural process is a transfer between systems that increases the sum of their entropies, and is irreversible. [2] Natural processes may occur spontaneously upon the removal of a constraint, or upon some other thermodynamic operation , or may be triggered in a metastable or unstable system, as for example in the ...
The laws of thermodynamics are the result of progress made in this field over the nineteenth and early twentieth centuries. The first established thermodynamic principle, which eventually became the second law of thermodynamics, was formulated by Sadi Carnot in 1824 in his book Reflections on the Motive Power of Fire.
In equilibrium thermodynamics the state variables do not include fluxes because in a state of thermodynamic equilibrium all fluxes have zero values by definition. Equilibrium thermodynamic processes may involve fluxes but these must have ceased by the time a thermodynamic process or operation is complete bringing a system to its eventual ...
For quasi-static and reversible processes, the first law of thermodynamics is: d U = δ Q − δ W {\displaystyle dU=\delta Q-\delta W} where δQ is the heat supplied to the system and δW is the work done by the system.
The first and second law of thermodynamics are the most fundamental equations of thermodynamics. They may be combined into what is known as fundamental thermodynamic relation which describes all of the changes of thermodynamic state functions of a system of uniform temperature and pressure.
The zeroth law of thermodynamics is one of the four principal laws of thermodynamics. It provides an independent definition of temperature without reference to entropy, which is defined in the second law. The law was established by Ralph H. Fowler in the 1930s, long after the first, second, and third laws had been widely recognized.
A thermodynamic cycle consists of linked sequences of thermodynamic processes that involve transfer of heat and work into and out of the system, while varying pressure, temperature, and other state variables within the system, and that eventually returns the system to its initial state. [1]