Search results
Results From The WOW.Com Content Network
are solved using cross-multiplication, since the missing b term is implicitly equal to 1: =. Any equation containing fractions or rational expressions can be simplified by multiplying both sides by the least common denominator. This step is called clearing fractions.
Simplifying this further gives us the solution x = −3. It is easily checked that none of the zeros of x ( x + 1)( x + 2) – namely x = 0 , x = −1 , and x = −2 – is a solution of the final equation, so no spurious solutions were introduced.
A simple fraction (also known as a common fraction or vulgar fraction, where vulgar is Latin for "common") is a rational number written as a/b or , where a and b are both integers. [9] As with other fractions, the denominator (b) cannot be zero. Examples include 1 / 2 , − 8 / 5 , −8 / 5 , and 8 / −5
In other words, a fraction a / b is irreducible if and only if a and b are coprime, that is, if a and b have a greatest common divisor of 1. In higher mathematics, "irreducible fraction" may also refer to rational fractions such that the numerator and the denominator are coprime polynomials. [2]
Simplification is the process of replacing a mathematical expression by an equivalent one that is simpler (usually shorter), according to a well-founded ordering. Examples include:
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator. [1]
If this infinite continued fraction converges at all, it must converge to one of the roots of the monic polynomial x 2 + bx + c = 0. Unfortunately, this particular continued fraction does not converge to a finite number in every case. We can easily see that this is so by considering the quadratic formula and a monic polynomial with real ...
The formula for the difference of two squares can be used for factoring polynomials that contain the square of a first quantity minus the square of a second quantity. For example, the polynomial can be factored as follows: