When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Heat equation - Wikipedia

    en.wikipedia.org/wiki/Heat_equation

    The steady-state heat equation for a volume that contains a heat source (the inhomogeneous case), is the Poisson's equation: − k ∇ 2 u = q {\displaystyle -k\nabla ^{2}u=q} where u is the temperature , k is the thermal conductivity and q is the rate of heat generation per unit volume.

  3. Heisler chart - Wikipedia

    en.wikipedia.org/wiki/Heisler_Chart

    These first Heisler–Gröber charts were based upon the first term of the exact Fourier series solution for an infinite plane wall: (,) = = [⁡ + ⁡ ⁡], [1]where T i is the initial uniform temperature of the slab, T ∞ is the constant environmental temperature imposed at the boundary, x is the location in the plane wall, λ is the root of λ * tan λ = Bi, and α is thermal diffusivity.

  4. Fourier number - Wikipedia

    en.wikipedia.org/wiki/Fourier_number

    The Fourier number can be derived by nondimensionalizing the time-dependent diffusion equation.As an example, consider a rod of length that is being heated from an initial temperature by imposing a heat source of temperature > at time = and position = (with along the axis of the rod).

  5. Stefan problem - Wikipedia

    en.wikipedia.org/wiki/Stefan_problem

    This is accomplished by solving heat equations in both regions, subject to given boundary and initial conditions. At the interface between the phases (in the classical problem) the temperature is set to the phase change temperature. To close the mathematical system a further equation, the Stefan condition, is required. This is an energy balance ...

  6. Steady state (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Steady_state_(chemistry)

    The steady state approximation, [1] occasionally called the stationary-state approximation or Bodenstein's quasi-steady state approximation, involves setting the rate of change of a reaction intermediate in a reaction mechanism equal to zero so that the kinetic equations can be simplified by setting the rate of formation of the intermediate equal to the rate of its destruction.

  7. Duhamel's principle - Wikipedia

    en.wikipedia.org/wiki/Duhamel's_principle

    Duhamel's principle is the result that the solution to an inhomogeneous, linear, partial differential equation can be solved by first finding the solution for a step input, and then superposing using Duhamel's integral.

  8. Steady state - Wikipedia

    en.wikipedia.org/wiki/Steady_state

    Steady state determination is an important topic, because many design specifications of electronic systems are given in terms of the steady-state characteristics. Periodic steady-state solution is also a prerequisite for small signal dynamic modeling. Steady-state analysis is therefore an indispensable component of the design process.

  9. Finite volume method for one-dimensional steady state ...

    en.wikipedia.org/wiki/Finite_volume_method_for...

    These equations can be different in nature, e.g. elliptic, parabolic, or hyperbolic. The first well-documented use of this method was by Evans and Harlow (1957) at Los Alamos. The general equation for steady diffusion can easily be derived from the general transport equation for property Φ by deleting transient and convective terms. [1]