When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Angular velocity - Wikipedia

    en.wikipedia.org/wiki/Angular_velocity

    In physics, angular velocity (symbol ω or , the lowercase Greek letter omega), also known as the angular frequency vector, [1] is a pseudovector representation of how the angular position or orientation of an object changes with time, i.e. how quickly an object rotates (spins or revolves) around an axis of rotation and how fast the axis itself changes direction.

  3. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    The derivative of a vector is the linear velocity of its tip. Since A is a rotation matrix, by definition the length of r(t) is always equal to the length of r 0, and hence it does not change with time. Thus, when r(t) rotates, its tip moves along a circle, and the linear velocity of its tip is tangential to the circle; i.e., always ...

  4. Rotational frequency - Wikipedia

    en.wikipedia.org/wiki/Rotational_frequency

    Rotational frequency, also known as rotational speed or rate of rotation (symbols ν, lowercase Greek nu, and also n), is the frequency of rotation of an object around an axis. Its SI unit is the reciprocal seconds (s −1 ); other common units of measurement include the hertz (Hz), cycles per second (cps), and revolutions per minute (rpm).

  5. Angular frequency - Wikipedia

    en.wikipedia.org/wiki/Angular_frequency

    A sphere rotating around an axis. Points farther from the axis move faster, satisfying ω = v / r.. In physics, angular frequency (symbol ω), also called angular speed and angular rate, is a scalar measure of the angle rate (the angle per unit time) or the temporal rate of change of the phase argument of a sinusoidal waveform or sine function (for example, in oscillations and waves).

  6. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    Figure 1: Velocity v and acceleration a in uniform circular motion at angular rate ω; the speed is constant, but the velocity is always tangential to the orbit; the acceleration has constant magnitude, but always points toward the center of rotation. Figure 2: The velocity vectors at time t and time t + dt are moved from the orbit on the left ...

  7. Tangential speed - Wikipedia

    en.wikipedia.org/wiki/Tangential_speed

    When proper units are used for tangential speed v, rotational speed ω, and radial distance r, the direct proportion of v to both r and ω becomes the exact equation =. This comes from the following: the linear (tangential) velocity of an object in rotation is the rate at which it covers the circumference's length:

  8. Euler's equations (rigid body dynamics) - Wikipedia

    en.wikipedia.org/wiki/Euler's_equations_(rigid...

    In classical mechanics, Euler's rotation equations are a vectorial quasilinear first-order ordinary differential equation describing the rotation of a rigid body, using a rotating reference frame with angular velocity ω whose axes are fixed to the body. They are named in honour of Leonhard Euler. Their general vector form is

  9. Torque - Wikipedia

    en.wikipedia.org/wiki/Torque

    For a rotating object, the linear distance covered at the circumference of rotation is the product of the radius with the angle covered. That is: linear distance = radius × angular distance. And by definition, linear distance = linear speed × time = radius × angular speed × time. By the definition of torque: torque = radius × force.