When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Skin effect - Wikipedia

    en.wikipedia.org/wiki/Skin_effect

    Its reduction with increasing frequency, as the ratio of skin depth to the wire's radius falls below about 1, is plotted in the accompanying graph, and accounts for the reduction in the telephone cable inductance with increasing frequency in the table below. The internal component of a round wire's inductance vs. the ratio of skin depth to radius.

  3. Doppler effect - Wikipedia

    en.wikipedia.org/wiki/Doppler_effect

    Stationary sound source produces sound waves at a constant frequency f, and the wave-fronts propagate symmetrically away from the source at a constant speed c. The distance between wave-fronts is the wavelength. All observers will hear the same frequency, which will be equal to the actual frequency of the source where f = f 0.

  4. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)

  5. Fundamental diagram of traffic flow - Wikipedia

    en.wikipedia.org/wiki/Fundamental_diagram_of...

    In the study of traffic flow theory, the flow-density diagram is used to determine the traffic state of a roadway. Currently, there are two types of flow density graphs: parabolic and triangular. Academia views the triangular flow-density curve as more the accurate representation of real world events. The triangular curve consists of two vectors.

  6. Bode plot - Wikipedia

    en.wikipedia.org/wiki/Bode_plot

    In electrical engineering and control theory, a Bode plot is a graph of the frequency response of a system. It is usually a combination of a Bode magnitude plot, expressing the magnitude (usually in decibels) of the frequency response, and a Bode phase plot, expressing the phase shift.

  7. Dispersion relation - Wikipedia

    en.wikipedia.org/wiki/Dispersion_relation

    Frequency dispersion of surface gravity waves on deep water. The red square moves with the phase velocity, and the green dots propagate with the group velocity. In this deep-water case, the phase velocity is twice the group velocity. The red square traverses the figure in the time it takes the green dot to traverse half.

  8. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    The period and frequency are determined by the size of the mass m and the force constant k, while the amplitude and phase are determined by the starting position and velocity. The velocity and acceleration of a simple harmonic oscillator oscillate with the same frequency as the position, but with shifted phases. The velocity is maximal for zero ...

  9. Pulsatile flow - Wikipedia

    en.wikipedia.org/wiki/Pulsatile_flow

    is the longitudinal flow velocity, r: is the radial coordinate, t: is time, α: is the dimensionless Womersley number, ω: is the angular frequency of the first harmonic of a Fourier series of an oscillatory pressure gradient, n: are the natural numbers, P' n: is the pressure gradient magnitude for the frequency nω, ρ: is the fluid density, μ