When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. List of equations in nuclear and particle physics - Wikipedia

    en.wikipedia.org/wiki/List_of_equations_in...

    Mass number. A = (Relative) atomic mass = Mass number = Sum of protons and neutrons. N = Number of neutrons. Z = Atomic number = Number of protons = Number of electrons. A = Z + N {\displaystyle A=Z+N\,\!} Mass in nuclei. M'nuc = Mass of nucleus, bound nucleons. MΣ = Sum of masses for isolated nucleons.

  3. Nuclear reaction - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reaction

    Nuclear physics. In nuclear physics and nuclear chemistry, a nuclear reaction is a process in which two nuclei, or a nucleus and an external subatomic particle, collide to produce one or more new nuclides. Thus, a nuclear reaction must cause a transformation of at least one nuclide to another. If a nucleus interacts with another nucleus or ...

  4. Nuclear reactor physics - Wikipedia

    en.wikipedia.org/wiki/Nuclear_reactor_physics

    Nuclear reactor physics. Pressurized water reactor: Projective representation of the thermal neutron flux of a fuel assembly of the 18×18 array with 300 fuel rods and 24 inserted control rods. Nuclear reactor physics is the field of physics that studies and deals with the applied study and engineering applications of chain reaction to induce a ...

  5. Nuclear force - Wikipedia

    en.wikipedia.org/wiki/Nuclear_force

    Comparison between the Nuclear Force and the Coulomb Force. a – residual strong force (nuclear force), rapidly decreases to insignificance at distances beyond about 2.5 fm, b – at distances less than ~ 0.7 fm between nucleons centres the nuclear force becomes repulsive, c – coulomb repulsion force between two protons (over 3 fm, force becomes the main), d – equilibrium position for ...

  6. Neutron transport equation - Wikipedia

    en.wikipedia.org/wiki/Neutron_transport

    Under construction: ESS. v. t. e. Neutron transport (also known as neutronics) is the study of the motions and interactions of neutrons with materials. Nuclear scientists and engineers often need to know where neutrons are in an apparatus, in what direction they are going, and how quickly they are moving.

  7. Nuclear binding energy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_binding_energy

    Nuclear binding energy in experimental physics is the minimum energy that is required to disassemble the nucleus of an atom into its constituent protons and neutrons, known collectively as nucleons. The binding energy for stable nuclei is always a positive number, as the nucleus must gain energy for the nucleons to move apart from each other.

  8. Beta decay - Wikipedia

    en.wikipedia.org/wiki/Beta_decay

    t. e. In nuclear physics, beta decay (β-decay) is a type of radioactive decay in which an atomic nucleus emits a beta particle (fast energetic electron or positron), transforming into an isobar of that nuclide. For example, beta decay of a neutron transforms it into a proton by the emission of an electron accompanied by an antineutrino; or ...

  9. Q value (nuclear science) - Wikipedia

    en.wikipedia.org/wiki/Q_value_(nuclear_science)

    In nuclear physics and chemistry, the Q value for a nuclear reaction is the amount of energy absorbed or released during the reaction. The value relates to the enthalpy of a chemical reaction or the energy of radioactive decay products. It can be determined from the masses of reactants and products. Q values affect reaction rates.