Search results
Results From The WOW.Com Content Network
In electrical engineering, three-phase electric power systems have at least three conductors carrying alternating voltages that are offset in time by one-third of the period. A three-phase system may be arranged in delta (∆) or star (Y) (also denoted as wye in some areas, as symbolically it is similar to the letter 'Y').
In Europe, three-phase 230/400 V is most commonly used. However, 130/225 V, three-wire, two-phase electric power discontinued systems called B1 are used to run old installations in small groups of houses when only two of the three-phase high-voltage conductors are used. The phase shift in Europe is 120°, as is the case with three-phase current.
Current practice is to give separate services for single-phase and three-phase loads, e.g., 120 V split-phase (lighting etc.) and 240 V to 600 V three-phase (for large motors). However, many jurisdictions forbid more than one class for a premises' service, and the choice may come down to 120/240 V split-phase, 208 V single-phase or three-phase ...
In a symmetric three-phase power supply system, three conductors each carry an alternating current of the same frequency and voltage amplitude relative to a common reference, but with a phase difference of one third of a cycle (i.e., 120 degrees out of phase) between each. The common reference is usually connected to ground and often to a ...
As an example of how per-unit is used, consider a three-phase power transmission system that deals with powers of the order of 500 MW and uses a nominal voltage of 138 kV for transmission. We arbitrarily select S b a s e = 500 M V A {\displaystyle S_{\mathrm {base} }=500\,\mathrm {MVA} } , and use the nominal voltage 138 kV as the base voltage ...
This is the elegance of the clarke transform as it reduces a three component system into a two component system thanks to this assumption. Another way to understand this is that the equation I a + I b + I c = 0 {\displaystyle I_{a}+I_{b}+I_{c}=0} defines a plane in a euclidean three coordinate space.
The faults may be three-phase short circuit, one-phase grounded, two-phase short circuit, two-phase grounded, one-phase break, two-phase break or complex faults. Results of such an analysis may help determine the following: Magnitude of the fault current; Circuit breaker capacity; Rise in voltage in a single line due to ground fault
A three-phase system is also prone to larger lengthwise gaps between sections, owing to the complexity of two-wire overhead, and so a long pickup base is needed. In Italy this was achieved with the long bow collectors reaching right to the ends of the locomotive, or with a pair of pantographs, also mounted as far apart as possible.