Search results
Results From The WOW.Com Content Network
The elements on the diagonal of a skew-symmetric matrix are zero, and therefore its trace equals zero. If is a real skew-symmetric matrix and is a real eigenvalue, then =, i.e. the nonzero eigenvalues of a skew-symmetric matrix are non-real. If is a real skew-symmetric matrix, then + is invertible, where is the identity matrix.
Download as PDF; Printable version; ... where J is the skew-symmetric matrix = ... Toggle the table of contents. Hamiltonian matrix.
In linear algebra, a skew-Hamiltonian matrix is a specific type of matrix that corresponds to a skew-symmetric bilinear form on a symplectic vector space. Let be a vector space equipped with a symplectic form, denoted by Ω. A symplectic vector space must necessarily be of even dimension.
In graph theory, the Tutte matrix A of a graph G = (V, E) is a matrix used to determine the existence of a perfect matching: that is, a set of edges which is incident with each vertex exactly once. If the set of vertices is V = { 1 , 2 , … , n } {\displaystyle V=\{1,2,\dots ,n\}} then the Tutte matrix is an n -by- n matrix A with entries
Any square matrix can uniquely be written as sum of a symmetric and a skew-symmetric matrix. This decomposition is known as the Toeplitz decomposition. Let Mat n {\displaystyle {\mbox{Mat}}_{n}} denote the space of n × n {\displaystyle n\times n} matrices.
In mathematics, especially linear algebra, and in theoretical physics, the adjective antisymmetric (or skew-symmetric) is used for matrices, tensors, and other objects that change sign if an appropriate operation (e.g. matrix transposition) is performed. See: Skew-symmetric matrix (a matrix A for which A T = −A)
If the underlying field has characteristic not 2, alternation is equivalent to skew-symmetry. If the characteristic is 2, the skew-symmetry is implied by, but does not imply alternation. In this case every symplectic form is a symmetric form, but not vice versa. Working in a fixed basis, can be represented by a matrix.
Conversely, let Q be any orthogonal matrix which does not have −1 as an eigenvalue; then = (+) is a skew-symmetric matrix. (See also: Involution.) The condition on Q automatically excludes matrices with determinant −1, but also excludes certain special orthogonal matrices.