When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Symmetric matrix - Wikipedia

    en.wikipedia.org/wiki/Symmetric_matrix

    A complex symmetric matrix can be 'diagonalized' using a unitary matrix: thus if is a complex symmetric matrix, there is a unitary matrix such that is a real diagonal matrix with non-negative entries.

  3. Rank (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Rank_(linear_algebra)

    A matrix that has rank min(m, n) is said to have full rank; otherwise, the matrix is rank deficient. Only a zero matrix has rank zero. f is injective (or "one-to-one") if and only if A has rank n (in this case, we say that A has full column rank). f is surjective (or "onto") if and only if A has rank m (in this case, we say that A has full row ...

  4. Definite matrix - Wikipedia

    en.wikipedia.org/wiki/Definite_matrix

    In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector, where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...

  5. Minimum rank of a graph - Wikipedia

    en.wikipedia.org/wiki/Minimum_rank_of_a_graph

    The minimum rank of a graph is always at most equal to n − 1, where n is the number of vertices in the graph. [1] For every induced subgraph H of a given graph G, the minimum rank of H is at most equal to the minimum rank of G. [2] If a graph is disconnected, then its minimum rank is the sum of the minimum ranks of its connected components. [3]

  6. Matrix (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Matrix_(mathematics)

    If instead, A is equal to the negative of its transpose, that is, A = −A T, then A is a skew-symmetric matrix. In complex matrices, symmetry is often replaced by the concept of Hermitian matrices, which satisfies A ∗ = A, where the star or asterisk denotes the conjugate transpose of the matrix, that is, the transpose of the complex ...

  7. Rank factorization - Wikipedia

    en.wikipedia.org/wiki/Rank_factorization

    Every finite-dimensional matrix has a rank decomposition: Let be an matrix whose column rank is . Therefore, there are r {\textstyle r} linearly independent columns in A {\textstyle A} ; equivalently, the dimension of the column space of A {\textstyle A} is r {\textstyle r} .

  8. Laplacian matrix - Wikipedia

    en.wikipedia.org/wiki/Laplacian_matrix

    The Laplacian matrix of a directed graph is by definition generally non-symmetric, while, e.g., traditional spectral clustering is primarily developed for undirected graphs with symmetric adjacency and Laplacian matrices. A trivial approach to applying techniques requiring the symmetry is to turn the original directed graph into an undirected ...

  9. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    Applicable to: m-by-n matrix A of rank r Decomposition: A = C F {\displaystyle A=CF} where C is an m -by- r full column rank matrix and F is an r -by- n full row rank matrix Comment: The rank factorization can be used to compute the Moore–Penrose pseudoinverse of A , [ 2 ] which one can apply to obtain all solutions of the linear system A x ...