Search results
Results From The WOW.Com Content Network
A complex symmetric matrix can be 'diagonalized' using a unitary matrix: thus if is a complex symmetric matrix, there is a unitary matrix such that is a real diagonal matrix with non-negative entries.
A matrix that has rank min(m, n) is said to have full rank; otherwise, the matrix is rank deficient. Only a zero matrix has rank zero. f is injective (or "one-to-one") if and only if A has rank n (in this case, we say that A has full column rank). f is surjective (or "onto") if and only if A has rank m (in this case, we say that A has full row ...
The minimum rank of a graph is always at most equal to n − 1, where n is the number of vertices in the graph. [1] For every induced subgraph H of a given graph G, the minimum rank of H is at most equal to the minimum rank of G. [2] If a graph is disconnected, then its minimum rank is the sum of the minimum ranks of its connected components. [3]
If instead, A is equal to the negative of its transpose, that is, A = −A T, then A is a skew-symmetric matrix. In complex matrices, symmetry is often replaced by the concept of Hermitian matrices, which satisfies A ∗ = A, where the star or asterisk denotes the conjugate transpose of the matrix, that is, the transpose of the complex ...
Every finite-dimensional matrix has a rank decomposition: Let be an matrix whose column rank is . Therefore, there are r {\textstyle r} linearly independent columns in A {\textstyle A} ; equivalently, the dimension of the column space of A {\textstyle A} is r {\textstyle r} .
Gramian matrix: The symmetric matrix of the pairwise inner products of a set of vectors in an inner product space: Hessian matrix: The square matrix of second partial derivatives of a function of several variables: Householder matrix: The matrix of a reflection with respect to a hyperplane passing through the origin: Jacobian matrix
Any symmetric permutation of the arrowhead matrix, , where P is a permutation matrix, is a (permuted) arrowhead matrix. Real symmetric arrowhead matrices are used in some algorithms for finding of eigenvalues and eigenvectors .
In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector, where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...