Search results
Results From The WOW.Com Content Network
Standard Model of Particle Physics. The diagram shows the elementary particles of the Standard Model (the Higgs boson, the three generations of quarks and leptons, and the gauge bosons), including their names, masses, spins, charges, chiralities, and interactions with the strong, weak and electromagnetic forces.
In particle physics, the quark model is a classification scheme for hadrons in terms of their valence quarks—the quarks and antiquarks that give rise to the quantum numbers of the hadrons. The quark model underlies "flavor SU(3)" , or the Eightfold Way , the successful classification scheme organizing the large number of lighter hadrons that ...
Interactions in the Standard Model. All Feynman diagrams in the model are built from combinations of these vertices. q is any quark, g is a gluon, X is any charged particle, γ is a photon, f is any fermion, m is any particle with mass (with the possible exception of the neutrinos), m B is any boson with mass. In diagrams with multiple particle ...
Detailed computations with the above-mentioned Lagrangian [26] show that the effective potential between a quark and its anti-quark in a meson contains a term that increases in proportion to the distance between the quark and anti-quark (), which represents some kind of "stiffness" of the interaction between the particle and its anti-particle ...
A Feynman diagram is a graphical representation of a perturbative contribution to the transition amplitude or correlation function of a quantum mechanical or statistical field theory. Within the canonical formulation of quantum field theory, a Feynman diagram represents a term in the Wick's expansion of the perturbative S-matrix.
In quantum field theory, scalar chromodynamics, also known as scalar quantum chromodynamics or scalar QCD, is a gauge theory consisting of a gauge field coupled to a scalar field. This theory is used experimentally to model the Higgs sector of the Standard Model. It arises from a coupling of a scalar field to gauge fields.
This is a list of quantum field theories. The first few sections are organized according to their matter content, that is, the types of fields appearing in the theory. This is just one of many ways to organize quantum field theories, but reflects the way the subject is taught pedagogically.
A theory of quantum gravity is needed in order to reconcile these differences. [16] Whether this theory should be background-independent is an open question. The answer to this question will determine the understanding of what specific role gravitation plays in the fate of the universe.