Search results
Results From The WOW.Com Content Network
In mathematics, an Euler–Cauchy equation, or Cauchy–Euler equation, or simply Euler's equation, is a linear homogeneous ordinary differential equation with variable coefficients. It is sometimes referred to as an equidimensional equation. Because of its particularly simple equidimensional structure, the differential equation can be solved ...
The Euler–Cauchy stress principle states that upon any surface (real or imaginary) that divides the body, the action of one part of the body on the other is equivalent (equipollent) to the system of distributed forces and couples on the surface dividing the body, [2] and it is represented by a field (), called the traction vector, defined on ...
In mathematics a Cauchy–Euler operator is a differential operator of the form () ...
In mathematics and computational science, the Euler method (also called the forward Euler method) is a first-order numerical procedure for solving ordinary differential equations (ODEs) with a given initial value.
Earlier in 1828, [6] Augustin-Louis Cauchy introduced a deformation tensor defined as the inverse of the left Cauchy–Green deformation tensor, . This tensor has also been called the Piola strain tensor by the IUPAC [ 4 ] and the Finger tensor [ 7 ] in the rheology and fluid dynamics literature.
In complex analysis, the residue theorem, sometimes called Cauchy's residue theorem, is a powerful tool to evaluate line integrals of analytic functions over closed curves; it can often be used to compute real integrals and infinite series as well. It generalizes the Cauchy integral theorem and Cauchy's integral formula.
In mathematics and computational science, Heun's method may refer to the improved [1] or modified Euler's method (that is, the explicit trapezoidal rule [2]), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value.
According to the fundamental lemma of calculus of variations, the part of the integrand in parentheses is zero, i.e. ′ = which is called the Euler–Lagrange equation. The left hand side of this equation is called the functional derivative of J [ f ] {\displaystyle J[f]} and is denoted δ J {\displaystyle \delta J} or δ f ( x ...