Ad
related to: kolmogorov probability
Search results
Results From The WOW.Com Content Network
The standard probability axioms are the foundations of probability theory introduced by Russian mathematician Andrey Kolmogorov in 1933. [1] These axioms remain central and have direct contributions to mathematics, the physical sciences, and real-world probability cases.
Andrey Nikolaevich Kolmogorov (Russian: Андре́й Никола́евич Колмого́ров, IPA: [ɐnˈdrʲej nʲɪkɐˈlajɪvʲɪtɕ kəlmɐˈɡorəf] ⓘ, 25 April 1903 – 20 October 1987) [4] [5] was a Soviet mathematician who played a central role in the creation of modern probability theory.
In probability theory, Kolmogorov equations, including Kolmogorov forward equations and Kolmogorov backward equations, characterize continuous-time Markov processes. In particular, they describe how the probability of a continuous-time Markov process in a certain state changes over time.
Kolmogorov combined the notion of sample space, introduced by Richard von Mises, and measure theory and presented his axiom system for probability theory in 1933. This became the mostly undisputed axiomatic basis for modern probability theory; but, alternatives exist, such as the adoption of finite rather than countable additivity by Bruno de ...
Kolmogorov's definition of probability spaces gives rise to the natural concept of conditional probability. Every set A with non-zero probability (that is, P(A) > 0) defines another probability measure = () on the space.
In probability theory, Kolmogorov's zero–one law, named in honor of Andrey Nikolaevich Kolmogorov, specifies that a certain type of event, namely a tail event of independent σ-algebras, will either almost surely happen or almost surely not happen; that is, the probability of such an event occurring is zero or one.
In mathematics, the Kolmogorov extension theorem (also known as Kolmogorov existence theorem, the Kolmogorov consistency theorem or the Daniell-Kolmogorov theorem) is a theorem that guarantees that a suitably "consistent" collection of finite-dimensional distributions will define a stochastic process.
In probability theory, Kolmogorov's Three-Series Theorem, named after Andrey Kolmogorov, gives a criterion for the almost sure convergence of an infinite series of random variables in terms of the convergence of three different series involving properties of their probability distributions. Kolmogorov's three-series theorem, combined with ...