Search results
Results From The WOW.Com Content Network
There are several loopholes to pure const-correctness in C and C++. They exist primarily for compatibility with existing code. The first, which applies only to C++, is the use of const_cast, which allows the programmer to strip the const qualifier, making any object modifiable. The necessity of stripping the qualifier arises when using existing ...
In C and C++, constructs such as pointer type conversion and union — C++ adds reference type conversion and reinterpret_cast to this list — are provided in order to permit many kinds of type punning, although some kinds are not actually supported by the standard language.
The first two of these, const and volatile, are also present in C++, and are the only type qualifiers in C++. Thus in C++ the term "cv-qualified type" (for const and volatile) is often used for "qualified type", while the terms "c-qualified type" and "v-qualified type" are used when only one of the qualifiers is relevant.
Existing Eiffel software uses the string classes (such as STRING_8) from the Eiffel libraries, but Eiffel software written for .NET must use the .NET string class (System.String) in many cases, for example when calling .NET methods which expect items of the .NET type to be passed as arguments. So, the conversion of these types back and forth ...
C++ changes some C standard library functions to add additional overloaded functions with const type qualifiers, e.g. strchr returns char* in C, while C++ acts as if there were two overloaded functions const char *strchr(const char *) and a char *strchr(char *). In C23 generic selection is used to make C's behaviour more similar to C++'s. [11]
In class-based programming, downcasting, or type refinement, is the act of casting a base or parent class reference, to a more restricted derived class reference. [1] This is only allowable if the object is already an instance of the derived class, and so this conversion is inherently fallible.
In C++11, this technique is known as generalized constant expressions (constexpr). [2] C++14 relaxes the constraints on constexpr – allowing local declarations and use of conditionals and loops (the general restriction that all data required for the execution be available at compile-time remains).
Notice that the type of the result can be regarded as everything past the first supplied argument. This is a consequence of currying, which is made possible by Haskell's support for first-class functions; this function requires two inputs where one argument is supplied and the function is "curried" to produce a function for the argument not supplied.