Search results
Results From The WOW.Com Content Network
The "68–95–99.7 rule" is often used to quickly get a rough probability estimate of something, given its standard deviation, if the population is assumed to be normal. It is also used as a simple test for outliers if the population is assumed normal, and as a normality test if the population is potentially not normal.
Each standard deviation represents a fixed percentile. Thus, rounding to two decimal places, −3 σ is the 0.13th percentile, −2 σ the 2.28th percentile, −1 σ the 15.87th percentile, 0 σ the 50th percentile (both the mean and median of the distribution), +1 σ the 84.13th percentile, +2 σ the 97.72nd percentile, and +3 σ the 99.87th ...
In probability and statistics, the 97.5th percentile point of the standard normal distribution is a number commonly used for statistical calculations. The approximate value of this number is 1.96 , meaning that 95% of the area under a normal curve lies within approximately 1.96 standard deviations of the mean .
Comparison of the various grading methods in a normal distribution, including: standard deviations, cumulative percentages, percentile equivalents, z-scores, T-scores. In statistics, the standard score is the number of standard deviations by which the value of a raw score (i.e., an observed value or data point) is above or below the mean value of what is being observed or measured.
If, for instance, the data set {0, 6, 8, 14} represents the ages of a population of four siblings in years, the standard deviation is 5 years. As another example, the population {1000, 1006, 1008, 1014} may represent the distances traveled by four athletes, measured in meters. It has a mean of 1007 meters, and a standard deviation of 5 meters.
Quantiles can be thought of as trimmed maxima or minima: for instance, the 5th percentile is the 5% trimmed minimum. Trimmed estimators used to estimate a location parameter include: Trimmed mean; Modified mean, discarding the minimum and maximum values; Interquartile mean, the 25% trimmed mean; Midhinge, the 25% trimmed mid-range
The figure illustrates the percentile rank computation and shows how the 0.5 × F term in the formula ensures that the percentile rank reflects a percentage of scores less than the specified score. For example, for the 10 scores shown in the figure, 60% of them are below a score of 4 (five less than 4 and half of the two equal to 4) and 95% are ...
It is desired that a score of 99 correspond to the 99th percentile; The 99th percentile in a normal distribution is 2.3263 standard deviations above the mean; 99 is 49 more than 50—thus 49 points above the mean; 49/2.3263 = 21.06. Normal curve equivalents are on an equal-interval scale.