When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Haar measure - Wikipedia

    en.wikipedia.org/wiki/Haar_measure

    In 1936, André Weil proved a converse (of sorts) to Haar's theorem, by showing that if a group has a left invariant measure with a certain separating property, [3] then one can define a topology on the group, and the completion of the group is locally compact and the given measure is essentially the same as the Haar measure on this completion.

  3. Quantum t-design - Wikipedia

    en.wikipedia.org/wiki/Quantum_t-design

    Since every operator in SU(2) is a rotation of the Bloch sphere, the Haar measure for spin-1/2 particles is invariant under all rotations of the Bloch sphere. This implies that the Haar measure is the rotationally invariant measure on the Bloch sphere, which can be thought of as a constant density distribution over the surface of the sphere.

  4. Group algebra of a locally compact group - Wikipedia

    en.wikipedia.org/wiki/Group_algebra_of_a_locally...

    If G is a locally compact Hausdorff group, G carries an essentially unique left-invariant countably additive Borel measure μ called a Haar measure.Using the Haar measure, one can define a convolution operation on the space C c (G) of complex-valued continuous functions on G with compact support; C c (G) can then be given any of various norms and the completion will be a group algebra.

  5. Haar wavelet - Wikipedia

    en.wikipedia.org/wiki/Haar_wavelet

    The Haar wavelet. In mathematics, the Haar wavelet is a sequence of rescaled "square-shaped" functions which together form a wavelet family or basis. Wavelet analysis is similar to Fourier analysis in that it allows a target function over an interval to be represented in terms of an orthonormal basis.

  6. Talk:Haar measure - Wikipedia

    en.wikipedia.org/wiki/Talk:Haar_measure

    which would say the left translate of a right Haar measure is a multiple of a left Haar measure. However, the left translate of a right Haar measure is also a right Haar measure so what you're looking for is an assertion that a right Haar measure is a multiple of a left Haar measure, e.g. is itself left Haar. That's only true for unimodular groups.

  7. Locally compact group - Wikipedia

    en.wikipedia.org/wiki/Locally_compact_group

    Any compact group is locally compact.. In particular the circle group T of complex numbers of unit modulus under multiplication is compact, and therefore locally compact. The circle group historically served as the first topologically nontrivial group to also have the property of local compactness, and as such motivated the search for the more general theory, presented here.

  8. Special unitary group - Wikipedia

    en.wikipedia.org/wiki/Special_unitary_group

    Furthermore, every rotation arises from exactly two versors in this fashion. In short: there is a 2:1 surjective homomorphism from SU(2) to SO(3); consequently SO(3) is isomorphic to the quotient group SU(2)/{±I}, the manifold underlying SO(3) is obtained by identifying antipodal points of the 3-sphere S 3, and SU(2) is the universal cover of ...

  9. Locally compact space - Wikipedia

    en.wikipedia.org/wiki/Locally_compact_space

    The Sierpiński space is locally compact in senses (1), (2) and (3), and compact as well, but it is not Hausdorff or regular (or even preregular) so it is not locally compact in senses (4) or (5). The disjoint union of countably many copies of Sierpiński space is a non-compact space which is still locally compact in senses (1), (2) and (3 ...