Search results
Results From The WOW.Com Content Network
The name arises for two reasons. First, the method relies on computing the solution in small steps, and treating the linear and the nonlinear steps separately (see below). Second, it is necessary to Fourier transform back and forth because the linear step is made in the frequency domain while the nonlinear step is made in the time domain.
Step 6: Solve the problem in the HEC-RAS Modeling Environment: It is beyond the scope of this Wikipedia Page to explain the intricacies of operating HEC-RAS. For those interested in learning more, the HEC-RAS user’s manual is an excellent learning tool and the program is free to the public.
Let us now apply Euler's method again with a different step size to generate a second approximation to y(t n+1). We get a second solution, which we label with a (). Take the new step size to be one half of the original step size, and apply two steps of Euler's method. This second solution is presumably more accurate.
The dead time θ is the amount of time between when the step change occurred and when the output first changed. The time constant (τ p) is the amount of time it takes for the output to reach 63.2% of the new steady-state value after the step change. One downside to using this method is that it can take a while to reach a new steady-state value ...
The Heaviside step function is an often-used step function. A constant function is a trivial example of a step function. Then there is only one interval, =. The sign function sgn(x), which is −1 for negative numbers and +1 for positive numbers, and is the simplest non-constant step function.
The method involves starting with a relatively large estimate of the step size for movement along the line search direction, and iteratively shrinking the step size (i.e., "backtracking") until a decrease of the objective function is observed that adequately corresponds to the amount of decrease that is expected, based on the step size and the ...
H ∞ (i.e. "H-infinity") methods are used in control theory to synthesize controllers to achieve stabilization with guaranteed performance. To use H ∞ methods, a control designer expresses the control problem as a mathematical optimization problem and then finds the controller that solves this optimization.
Flowchart of using successive subtractions to find the greatest common divisor of number r and s. In mathematics and computer science, an algorithm (/ ˈ æ l ɡ ə r ɪ ð əm / ⓘ) is a finite sequence of mathematically rigorous instructions, typically used to solve a class of specific problems or to perform a computation. [1]