Search results
Results From The WOW.Com Content Network
Observations show that an eyewall replacement cycle can lead to the development of an annular hurricane. While some hurricanes develop into annular hurricanes without an eyewall replacement, it has been hypothesized that the dynamics leading to the formation of a secondary eyewall may be similar to those needed for development of an annular eye ...
In tropical cyclones maximum wind speed of the storm, which occurs at the eyewall, is a primary indicator of its overall strength which is important in predicting overall intensity. Just beyond this eyewall is a moat which separates the inner rainbands (eventually the outer eyewall) from the (inner) eyewall.
Tropical cyclones can become annular as a result of eyewall mesovortices mixing the strong winds found in the eyewalls of storms with the weak winds of the eye, which helps to expand the eye. In addition, this process helps to make the equivalent potential temperature (often referred to as theta-e or θ e {\displaystyle \theta _{e}} ) within ...
Just outside of the eye is the eyewall, the most intense part of a hurricane where the highest winds are found. Contrary to what is often portrayed in TV shows and movies, hurricanes do not ...
In most cases, the outer eyewall begins to contract soon after its formation, which chokes off the inner eye and leaves a much larger but more stable eye. While the replacement cycle tends to weaken storms as it occurs, the new eyewall can contract fairly quickly after the old eyewall dissipates, allowing the storm to re-strengthen.
An eyewall mesovortex is a small-scale rotational feature found in an eyewall of an intense tropical cyclone. Eyewall mesovortices are similar, in principle, to small "suction vortices" often observed in multiple-vortex tornadoes. In these vortices, wind speed can be up to 10% higher than in the rest of the eyewall.
The central dense overcast, or CDO, of a tropical cyclone or strong subtropical cyclone is the large central area of thunderstorms surrounding its circulation center, caused by the formation of its eyewall. It can be round, angular, oval, or irregular in shape. This feature shows up in tropical cyclones of tropical storm or hurricane strength.
A fact from Eyewall replacement cycle appeared on Wikipedia's Main Page in the Did you know column on 26 March 2010 (check views). The text of the entry was as follows: Did you know... that as Hurricane Katrina approached New Orleans it underwent an eyewall replacement cycle that caused it to decrease in intensity but increase in diameter?