Search results
Results From The WOW.Com Content Network
Explosive nucleosynthesis occurs too rapidly for radioactive decay to decrease the number of neutrons, so that many abundant isotopes with equal and even numbers of protons and neutrons are synthesized by the silicon quasi-equilibrium process. [14] During this process, the burning of oxygen and silicon fuses nuclei that themselves have equal ...
The process has been automated since the late 1970s and can be used to form desired genetic sequences as well as for other uses in medicine and molecular biology. However, creating sequences chemically is impractical beyond 200-300 bases, and is an environmentally hazardous process.
R-process describes neutron capture in a region of high neutron flux, such as during supernova nucleosynthesis after core-collapse, and yields neutron-rich nuclides. S-process describes neutron capture that is slow relative to the rate of beta decay, as for stellar nucleosynthesis in some stars, and yields nuclei with stable nuclear shells.
The eukaryotic cell cycle consists of four distinct phases: G 1 phase, S phase (synthesis), G 2 phase (collectively known as interphase) and M phase (mitosis and cytokinesis). M phase is itself composed of two tightly coupled processes: mitosis, in which the cell's nucleus divides, and cytokinesis, in which the cell's cytoplasm and cell membrane divides forming two daughter cells.
The term p-process (p for proton) is used in two ways in the scientific literature concerning the astrophysical origin of the elements (nucleosynthesis).Originally it referred to a proton capture process which was proposed to be the source of certain, naturally occurring, neutron-deficient isotopes of the elements from selenium to mercury.
Stellar nucleosynthesis is responsible for all of the other elements occurring naturally in the universe as stable isotopes and primordial nuclide, from carbon to uranium. These occurred after the Big Bang, during star formation. Some lighter elements from carbon to iron were formed in stars and released into space by asymptotic giant branch ...
Or, in layperson terms, an intensely pleasurable response to sexual stimulation that involves both the brain (neurons) and the body (muscles). That said, Dr. Wise tells us that “orgasms exist on ...
This process results in a build-up of twists in the DNA ahead. [41] This build-up creates a torsional load that would eventually stop the replication fork. Topoisomerases are enzymes that temporarily break the strands of DNA, relieving the tension caused by unwinding the two strands of the DNA helix; topoisomerases (including DNA gyrase ...