Search results
Results From The WOW.Com Content Network
These processes typically produce hydrogen sulfide as a byproduct, which can go on to serve as an electron donor in sulfur oxidation. [11] Sulfate reduction by sulfate-reducing bacteria is dissimilatory; the purpose of reducing the sulfate is to produce energy, and the sulfide is excreted.
The contact process is a method of producing sulfuric acid in the high concentrations needed for industrial processes. Platinum was originally used as the catalyst for this reaction; however, because it is susceptible to reacting with arsenic impurities in the sulfur feedstock, vanadium(V) oxide (V 2 O 5) has since been preferred.
The carbon snake is a demonstration of the dehydration reaction of sugar by concentrated sulfuric acid. With concentrated sulfuric acid, granulated table sugar performs a degradation reaction which changes its form to a black solid-liquid mixture. [1] The carbon snake experiment can sometimes be misidentified as the black snake, "sugar snake ...
Instead of releasing oxygen gas while fixing carbon dioxide as in photosynthesis, hydrogen sulfide chemosynthesis produces solid globules of sulfur in the process. Mechanism of Action In deep sea environments, different organisms have been observed to have the ability to oxidize reduced compounds such as hydrogen sulfide. [ 7 ]
The overall reaction can be expressed this way: [10] Glucose + 2 NAD + + 2 P i + 2 ADP → 2 pyruvate + 2 NADH + 2 ATP + 2 H + + 2 H 2 O + energy. Starting with glucose, 1 ATP is used to donate a phosphate to glucose to produce glucose 6-phosphate. Glycogen can be converted into glucose 6-phosphate as well with the help of glycogen phosphorylase.
The lead chamber process was an industrial method used to produce sulfuric acid in large quantities. It has been largely supplanted by the contact process.. In 1746 in Birmingham, England, John Roebuck began producing sulfuric acid in lead-lined chambers, which were stronger and less expensive and could be made much larger than the glass containers that had been used previously.
Sulfur assimilation is the process by which living organisms incorporate sulfur into their biological molecules. [1] In plants, sulfate is absorbed by the roots and then transported to the chloroplasts by the transipration stream where the sulfur are reduced to sulfide with the help of a series of enzymatic reactions .
Reactions of oxidation of sulfide to sulfate and elemental sulfur (incorrectly balanced). The electrons (e −) liberated from these oxidation reactions, which release chemical energy, are then used to fix carbon into organic molecules. The elements that become oxidized are shown in pink, those that become reduced in blue, and the electrons in ...