Search results
Results From The WOW.Com Content Network
As in other mammals, human thermoregulation is an important aspect of homeostasis. In thermoregulation, body heat is generated mostly in the deep organs, especially the liver, brain, and heart, and in contraction of skeletal muscles. [1] Humans have been able to adapt to a great diversity of climates, including hot humid and hot arid.
Endotherms control body temperature by internal homeostatic mechanisms. In mammals, two separate homeostatic mechanisms are involved in thermoregulation—one mechanism increases body temperature, while the other decreases it. The presence of two separate mechanisms provides a very high degree of control.
The human body always works to remain in homeostasis. One form of homeostasis is thermoregulation. Body temperature varies in every individual, but the average internal temperature is 37.0 °C (98.6 °F). [1] Sufficient stress from extreme external temperature may cause injury or death if it exceeds the ability of the body to thermoregulate.
Thermoregulation is the ability of an organism to keep its body temperature within certain boundaries, even when the surrounding temperature is very different. A thermoconforming organism, by contrast, simply adopts the surrounding temperature as its own body temperature, thus avoiding the need for internal thermoregulation.
Thermoreceptors of the skin sense the temperature of water. A thermoreceptor is a non-specialised sense receptor, or more accurately the receptive portion of a sensory neuron, that codes absolute and relative changes in temperature, primarily within the innocuous range.
In particular, homeothermic species (including birds and mammals) maintain a stable body temperature by regulating metabolic processes. Other species have various degrees of thermoregulation . Because there are more than two categories of temperature control utilized by animals, the terms warm-blooded and cold-blooded have been deprecated in ...
To some degree, all cells of endotherms give off heat, especially when body temperature is below a regulatory threshold. However, brown adipose tissue is highly specialized for this non-shivering thermogenesis. First, each cell has a higher number of mitochondria compared to more typical cells.
Thermoregulation: sweat (through evaporation and evaporative heat loss) can lead to cooling of the surface of the skin and a reduction of body temperature. [29] Excretion: eccrine sweat gland secretion can also provide a significant excretory route for water and electrolytes. [30]