When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Greatest common divisor - Wikipedia

    en.wikipedia.org/wiki/Greatest_common_divisor

    The elements 2 and 1 + √ −3 are two maximal common divisors (that is, any common divisor which is a multiple of 2 is associated to 2, the same holds for 1 + √ −3, but they are not associated, so there is no greatest common divisor of a and b.

  3. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    For example, 6 and 35 factor as 6 = 2 × 3 and 35 = 5 × 7, so they are not prime, but their prime factors are different, so 6 and 35 are coprime, with no common factors other than 1. A 24×60 rectangle is covered with ten 12×12 square tiles, where 12 is the GCD of 24 and 60.

  4. Table of divisors - Wikipedia

    en.wikipedia.org/wiki/Table_of_divisors

    For example, 3 is a divisor of 21, since 21/7 = 3 (and therefore 7 is also a divisor of 21). If m is a divisor of n , then so is − m . The tables below only list positive divisors.

  5. Binary GCD algorithm - Wikipedia

    en.wikipedia.org/wiki/Binary_GCD_algorithm

    [10] [11] [12] In the case of large integers, the best asymptotic complexity is (() ⁡), with () the cost of -bit multiplication; this is near-linear and vastly smaller than the binary GCD algorithm's (), though concrete implementations only outperform older algorithms for numbers larger than about 64 kilobits (i.e. greater than 8×10 19265).

  6. Euler's totient function - Wikipedia

    en.wikipedia.org/wiki/Euler's_totient_function

    In other words, it is the number of integers k in the range 1 ≤ k ≤ n for which the greatest common divisor gcd(n, k) is equal to 1. [2] [3] The integers k of this form are sometimes referred to as totatives of n. For example, the totatives of n = 9 are the six numbers 1, 2, 4, 5, 7 and 8.

  7. Bézout's identity - Wikipedia

    en.wikipedia.org/wiki/Bézout's_identity

    As an example, the greatest common divisor of 15 and 69 is 3, and 3 can be written as a combination of 15 and 69 as 3 = 15 × (−9) + 69 × 2, with Bézout coefficients −9 and 2. Many other theorems in elementary number theory, such as Euclid's lemma or the Chinese remainder theorem , result from Bézout's identity.

  8. Divisor - Wikipedia

    en.wikipedia.org/wiki/Divisor

    The divisors of 10 illustrated with Cuisenaire rods: 1, 2, 5, and 10 In mathematics , a divisor of an integer n , {\displaystyle n,} also called a factor of n , {\displaystyle n,} is an integer m {\displaystyle m} that may be multiplied by some integer to produce n . {\displaystyle n.} [ 1 ] In this case, one also says that n {\displaystyle n ...

  9. Table of prime factors - Wikipedia

    en.wikipedia.org/wiki/Table_of_prime_factors

    The first: 1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23 (sequence A005408 in the OEIS). All integers are either even or odd. All integers are either even or odd. A square has even multiplicity for all prime factors (it is of the form a 2 for some a ).