Ad
related to: rigid body dynamics diagram
Search results
Results From The WOW.Com Content Network
In the physical science of dynamics, rigid-body dynamics studies the movement of systems of interconnected bodies under the action of external forces.The assumption that the bodies are rigid (i.e. they do not deform under the action of applied forces) simplifies analysis, by reducing the parameters that describe the configuration of the system to the translation and rotation of reference ...
A body is usually considered to be a rigid or flexible part of a mechanical system (not to be confused with the human body). An example of a body is the arm of a robot, a wheel or axle in a car or the human forearm. A link is the connection of two or more bodies, or a body with the ground.
A force arrow should lie along the line of force, but where along the line is irrelevant. A force on an extended rigid body is a sliding vector. non-rigid extended. The point of application of a force becomes crucial and has to be indicated on the diagram. A force on a non-rigid body is a bound vector. Some use the tail of the arrow to indicate ...
Euler angles – Description of the orientation of a rigid body; Geometric terms of location – Directions or positions relative to the shape and position of an object; Ship motions – Terms connected to the six degrees of freedom of motion; Aircraft principal axes – Principal directions in aviation
In order to define the twist of a rigid body, we must consider its movement defined by the parameterized set of spatial displacements, D(t) = ([A(t)], d(t)), where [A] is a rotation matrix and d is a translation vector. This causes a point p that is fixed in moving body coordinates to trace a curve P(t) in the fixed frame given by
The rigid body noted by the letters BAC is connected with links P 1-A and P 2-B to a base or frame. The three moving parts of this mechanism (the base is not moving) are: link P 1-A, link P 2-B, and body BAC. For each of these three parts an instant center of rotation may be determined.
a cm is the linear acceleration of the center of mass of the body, m is the mass of the body, α is the angular acceleration of the body, and; I is the moment of inertia of the body about its center of mass. See also Euler's equations (rigid body dynamics).
In physics, a rigid body, also known as a rigid object, [2] is a solid body in which deformation is zero or negligible. The distance between any two given points on a rigid body remains constant in time regardless of external forces or moments exerted on it. A rigid body is usually considered as a continuous distribution of mass.