When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    The acceleration of a falling body in the absence of resistances to motion is dependent only on the gravitational field strength g (also called acceleration due to gravity). By Newton's Second Law the force F g {\displaystyle \mathbf {F_{g}} } acting on a body is given by: F g = m g . {\displaystyle \mathbf {F_{g}} =m\mathbf {g} .}

  3. Equations for a falling body - Wikipedia

    en.wikipedia.org/wiki/Equations_for_a_falling_body

    Centripetal force causes the acceleration measured on the rotating surface of the Earth to differ from the acceleration that is measured for a free-falling body: the apparent acceleration in the rotating frame of reference is the total gravity vector minus a small vector toward the north–south axis of the Earth, corresponding to staying ...

  4. Gravitational acceleration - Wikipedia

    en.wikipedia.org/wiki/Gravitational_acceleration

    The gravitational acceleration vector depends only on how massive the field source is and on the distance 'r' to the sample mass . It does not depend on the magnitude of the small sample mass. This model represents the "far-field" gravitational acceleration associated with a massive body.

  5. g-force - Wikipedia

    en.wikipedia.org/wiki/G-force

    Calculated acceleration of the mandibles of the ant species Mystrium camillae [41] 607,805 g: Acceleration of a nematocyst: the fastest recorded acceleration from any biological entity. [42] 5,410,000 g: Mean acceleration of a proton in the Large Hadron Collider [43] 190,000,000 g: Gravitational acceleration at the surface of a typical neutron ...

  6. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    Given initial velocity u, one can calculate how high the ball will travel before it begins to fall. The acceleration is local acceleration of gravity g. While these quantities appear to be scalars, the direction of displacement, speed and acceleration is important. They could in fact be considered as unidirectional vectors.

  7. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    Therefore, the mass of a body can be calculated from observations of another body orbiting around it. [44]: 130 Newton's cannonball is a thought experiment that interpolates between projectile motion and uniform circular motion. A cannonball that is lobbed weakly off the edge of a tall cliff will hit the ground in the same amount of time as if ...

  8. Gravity of Earth - Wikipedia

    en.wikipedia.org/wiki/Gravity_of_Earth

    The weight of an object on Earth's surface is the downwards force on that object, given by Newton's second law of motion, or F = m a (force = mass × acceleration). Gravitational acceleration contributes to the total gravity acceleration, but other factors, such as the rotation of Earth, also contribute, and, therefore, affect the weight of the ...

  9. Acceleration (special relativity) - Wikipedia

    en.wikipedia.org/wiki/Acceleration_(special...

    In order to find out the transformation of three-acceleration, one has to differentiate the spatial coordinates and ′ of the Lorentz transformation with respect to and ′, from which the transformation of three-velocity (also called velocity-addition formula) between and ′ follows, and eventually by another differentiation with respect to and ′ the transformation of three-acceleration ...