When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    Euclid offered a proof published in his work Elements (Book IX, Proposition 20), [1] which is paraphrased here. [2] Consider any finite list of prime numbers p 1, p 2, ..., p n. It will be shown that there exists at least one additional prime number not included in this list. Let P be the product of all the prime numbers in the list: P = p 1 p ...

  3. Prime number theorem - Wikipedia

    en.wikipedia.org/wiki/Prime_number_theorem

    In the first half of the twentieth century, some mathematicians (notably G. H. Hardy) believed that there exists a hierarchy of proof methods in mathematics depending on what sorts of numbers (integers, reals, complex) a proof requires, and that the prime number theorem (PNT) is a "deep" theorem by virtue of requiring complex analysis. [9]

  4. Furstenberg's proof of the infinitude of primes - Wikipedia

    en.wikipedia.org/wiki/Furstenberg's_proof_of_the...

    In mathematics, particularly in number theory, Hillel Furstenberg's proof of the infinitude of primes is a topological proof that the integers contain infinitely many prime numbers. When examined closely, the proof is less a statement about topology than a statement about certain properties of arithmetic sequences. [1] [2] Unlike Euclid's ...

  5. Euclid's lemma - Wikipedia

    en.wikipedia.org/wiki/Euclid's_lemma

    Any prime number is prime to any number it does not measure. [note 7] Proposition 30 If two numbers, by multiplying one another, make the same number, and any prime number measures the product, it also measures one of the original numbers. [note 8] Proof of 30 If c, a prime number, measure ab, c measures either a or b. Suppose c does not measure a.

  6. Formula for primes - Wikipedia

    en.wikipedia.org/wiki/Formula_for_primes

    Because the set of primes is a computably enumerable set, by Matiyasevich's theorem, it can be obtained from a system of Diophantine equations. Jones et al. (1976) found an explicit set of 14 Diophantine equations in 26 variables, such that a given number k + 2 is prime if and only if that system has a solution in nonnegative integers: [7]

  7. Prime number - Wikipedia

    en.wikipedia.org/wiki/Prime_number

    The original proof of the prime number theorem was based on a weak form of this hypothesis, that there are no zeros with real part equal to ⁠ ⁠, [97] [98] although other more elementary proofs have been found. [99]

  8. Category:Theorems about prime numbers - Wikipedia

    en.wikipedia.org/wiki/Category:Theorems_about...

    Pages in category "Theorems about prime numbers" The following 31 pages are in this category, out of 31 total. ... Proof of Bertrand's postulate; Bonse's inequality;

  9. List of Mersenne primes and perfect numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_Mersenne_primes...

    Mersenne primes and perfect numbers are two deeply interlinked types of natural numbers in number theory. Mersenne primes, named after the friar Marin Mersenne, are prime numbers that can be expressed as 2 p − 1 for some positive integer p. For example, 3 is a Mersenne prime as it is a prime number and is expressible as 2 2 − 1.