Search results
Results From The WOW.Com Content Network
There are two types of active transport: primary active transport that uses adenosine triphosphate (ATP), and secondary active transport that uses an electrochemical gradient. This process is in contrast to passive transport , which allows molecules or ions to move down their concentration gradient, from an area of high concentration to an area ...
Secondary active transport is when one solute moves down the electrochemical gradient to produce enough energy to force the transport of another solute from low concentration to high concentration. [ citation needed ] An example of where this occurs is in the movement of glucose within the proximal convoluted tubule (PCT).
Exocytosis (/ ˌ ɛ k s oʊ s aɪ ˈ t oʊ s ɪ s / [1] [2]) is a form of active transport and bulk transport in which a cell transports molecules (e.g., neurotransmitters and proteins) out of the cell (exo-+ cytosis). As an active transport mechanism, exocytosis requires the use of energy to transport material.
Active transport is the movement of a substance across a membrane against its concentration gradient. This is usually to accumulate high concentrations of molecules that a cell needs, such as glucose or amino acids. If the process uses chemical energy, such as adenosine triphosphate (ATP), it is called primary active transport.
Where the hydrolysis of the energy provider is indirect as is the case in secondary active transport, use is made of the energy stored in an electrochemical gradient. For example, in co-transport use is made of the gradients of certain solutes to transport a target compound against its gradient, causing the dissipation of the solute gradient ...
Diffusion vs. Transport. In biology, an ion transporter is a transmembrane protein that moves ions (or other small molecules) across a biological membrane to accomplish many different biological functions, including cellular communication, maintaining homeostasis, energy production, etc. [1] There are different types of transporters including pumps, uniporters, antiporters, and symporters.
Neutron transport (also known as neutronics) is the study of the motions and interactions of neutrons with materials. Nuclear scientists and engineers often need to know where neutrons are in an apparatus, in what direction they are going, and how quickly they are moving.
In chemical engineering, transport phenomena are studied in reactor design, analysis of molecular or diffusive transport mechanisms, and metallurgy. The transport of mass, energy, and momentum can be affected by the presence of external sources: An odor dissipates more slowly (and may intensify) when the source of the odor remains present.