Ad
related to: photon absorption cross section meaning
Search results
Results From The WOW.Com Content Network
In the context of ozone shielding of ultraviolet light, absorption cross section is the ability of a molecule to absorb a photon of a particular wavelength and polarization. Analogously, in the context of nuclear engineering, it refers to the probability of a particle (usually a neutron ) being absorbed by a nucleus.
Two-photon absorption is a third-order process, with absorption cross section typically several orders of magnitude smaller than one-photon absorption cross section. Two-photon absorption was originally predicted by Maria Goeppert-Mayer in 1931 in her doctoral dissertation. [2]
The mass attenuation coefficient (also called "mass extinction coefficient"), which is the absorption coefficient divided by density; The absorption cross section and scattering cross-section, related closely to the absorption and attenuation coefficients, respectively "Extinction" in astronomy, which is equivalent to the attenuation coefficient
A gamma ray cross section is a measure of the probability that a gamma ray interacts with matter. The total cross section of gamma ray interactions is composed of several independent processes: photoelectric effect, Compton (incoherent) scattering, electron-positron pair production in the nucleus field and electron-positron pair production in the electron field (triplet production).
An absorption line is formed when an atom or molecule makes a transition from a lower, E 1, to a higher discrete energy state, E 2, with a photon being absorbed in the process. These absorbed photons generally come from background continuum radiation (the full spectrum of electromagnetic radiation) and a spectrum will show a drop in the ...
To implement non-degenerate two photon excitation microscopy, two photon pulses of differing energies must be synchronized to interact with a specimen at the sample plane near-simultaneously. Due to the enhanced absorption cross section and VSL, more time is possible for excitation to occur, and thus perfect synchronization is unnecessary.
The photon will have frequency ν 0 and energy hν 0, given by: = where h is the Planck constant. Alternatively, if the excited-state atom is perturbed by an electric field of frequency ν 0 , it may emit an additional photon of the same frequency and in phase, thus augmenting the external field, leaving the atom in the lower energy state.
This cross section depends on the energy of the photon (proportional to its wavenumber) and the species being considered i.e. it depends on the structure of the molecular species. In the case of molecules, the photoionization cross-section can be estimated by examination of Franck-Condon factors between a ground-state molecule and the target ion.
Ad
related to: photon absorption cross section meaning