Search results
Results From The WOW.Com Content Network
The incomplete elliptic integral of the first kind F is defined as (,) = = (;) = .This is Legendre's trigonometric form of the elliptic integral; substituting t = sin θ and x = sin φ, one obtains Jacobi's algebraic form:
The relation to elliptic integrals has mainly a historical background. Elliptic integrals had been studied by Legendre, whose work was taken on by Niels Henrik Abel and Carl Gustav Jacobi. Abel discovered elliptic functions by taking the inverse function of the elliptic integral function
The incomplete elliptic integral of the first kind is defined as, (,) = (),the second kind as (,) = (),and the third kind as (,,) = ( ()) ().The argument n of the third kind of integral is known as the characteristic, which in different notational conventions can appear as either the first, second or third argument of Π and furthermore is sometimes defined with the opposite sign.
where K and K′ are the complete elliptic integrals of the first kind for values satisfying k 2 + k′ 2 = 1, and E and E′ are the complete elliptic integrals of the second kind. This form of Legendre's relation expresses the fact that the Wronskian of the complete elliptic integrals (considered as solutions of a differential equation) is a ...
So the sine function is an inverse function of an integral function. [3] Elliptic functions are the inverse functions of elliptic integrals. In particular, ...
known as the complete elliptic integral of the second kind, the perimeter can be expressed in terms of that function as simply P = 4 a E ( e 2 ) {\displaystyle P=4aE(e^{2})} . The integral used to find the area does not have a closed-form solution in terms of elementary functions .
In mathematics, the Carlson symmetric forms of elliptic integrals are a small canonical set of elliptic integrals to which all others may be reduced. They are a modern alternative to the Legendre forms. The Legendre forms may be expressed in terms of the Carlson forms and vice versa.
Landen's transformation is a mapping of the parameters of an elliptic integral, useful for the efficient numerical evaluation of elliptic functions. It was originally due to John Landen and independently rediscovered by Carl Friedrich Gauss .