Ads
related to: polar metric tensor calculator with steps and names
Search results
Results From The WOW.Com Content Network
the point's direction from the pole relative to the direction of the polar axis, a ray drawn from the pole. The distance from the pole is called the radial coordinate, radial distance or simply radius, and the angle is called the angular coordinate, polar angle, or azimuth. [1] The pole is analogous to the origin in a Cartesian coordinate system.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
A metric tensor field g on M assigns to each point p of M a metric tensor g p in the tangent space at p in a way that varies smoothly with p. More precisely, given any open subset U of manifold M and any (smooth) vector fields X and Y on U , the real function g ( X , Y ) ( p ) = g p ( X p , Y p ) {\displaystyle g(X,Y)(p)=g_{p}(X_{p},Y_{p})} is ...
In the cylindrical coordinate system, a z-coordinate with the same meaning as in Cartesian coordinates is added to the r and θ polar coordinates giving a triple (r, θ, z). [8] Spherical coordinates take this a step further by converting the pair of cylindrical coordinates (r, z) to polar coordinates (ρ, φ) giving a triple (ρ, θ, φ). [9]
Once the radius is fixed, the three coordinates (r, θ, φ), known as a 3-tuple, provide a coordinate system on a sphere, typically called the spherical polar coordinates. The plane passing through the origin and perpendicular to the polar axis (where the polar angle is a right angle) is called the reference plane (sometimes fundamental plane).
The polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point and an angle from a reference direction. The reference point (analogous to the origin of a Cartesian system) is called the pole, and the ray from the pole in the reference direction is the polar axis.
Vector and tensor calculus in general curvilinear coordinates is used in tensor analysis on four-dimensional curvilinear manifolds in general relativity, [11] in the mechanics of curved shells, [9] in examining the invariance properties of Maxwell's equations which has been of interest in metamaterials [12] [13] and in many other fields.
Vector and tensor calculus in general curvilinear coordinates is used in tensor analysis on four-dimensional curvilinear manifolds in general relativity, [8] in the mechanics of curved shells, [6] in examining the invariance properties of Maxwell's equations which has been of interest in metamaterials [9] [10] and in many other fields.
Ad
related to: polar metric tensor calculator with steps and names