Search results
Results From The WOW.Com Content Network
1–18: 5 convex regular and 13 convex semiregular; 20–22, 41: 4 non-convex regular; 19–66: Special 48 stellations/compounds (Nonregulars not given on this list) 67–109: 43 non-convex non-snub uniform; 110–119: 10 non-convex snub uniform; Chi: the Euler characteristic, χ. Uniform tilings on the plane correspond to a torus topology ...
A hexahedron (pl.: hexahedra or hexahedrons) or sexahedron (pl.: sexahedra or sexahedrons) is any polyhedron with six faces. A cube, for example, is a regular hexahedron with all its faces square, and three squares around each vertex. There are seven topologically distinct convex hexahedra, [1] one of which exists in two mirror image forms ...
Following is a list of shapes studied in mathematics. Algebraic curves Cubic plane curve ... 3 convex 5-polytopes: 0: 3 tetracombs: 5: 4: 2: ∞ 6: 3 convex 6 ...
3 - equilateral triangle; 4 - square; 5 - regular pentagon; 6 - regular hexagon; 8 - regular octagon; 10 - regular decagon; 5/2 - pentagram; 8/3 - octagram; 10/3 - decagram; Some faces will appear with reverse orientation which is written here as -3 - a triangle with reverse orientation (often written as 3/2) Others pass through the origin ...
This is a list of two-dimensional geometric shapes in Euclidean and other geometries. For mathematical objects in more dimensions, see list of mathematical shapes. For a broader scope, see list of shapes.
This table shows the 11 convex uniform tilings (regular and semiregular) of the Euclidean plane, and their dual tilings. There are three regular and eight semiregular tilings in the plane. The semiregular tilings form new tilings from their duals, each made from one type of irregular face.
A convex polyhedron is a polyhedron that bounds a convex set. Every convex polyhedron can be constructed as the convex hull of its vertices, and for every finite set of points, not all on the same plane, the convex hull is a convex polyhedron. Cubes and pyramids are examples of convex polyhedra.
A polytope is a geometric object with flat sides, which exists in any general number of dimensions. The following list of polygons, polyhedra and polytopes gives the names of various classes of polytopes and lists some specific examples.