When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. C4.5 algorithm - Wikipedia

    en.wikipedia.org/wiki/C4.5_algorithm

    C4.5 is an algorithm used to generate a decision tree developed by Ross Quinlan. [1] C4.5 is an extension of Quinlan's earlier ID3 algorithm.The decision trees generated by C4.5 can be used for classification, and for this reason, C4.5 is often referred to as a statistical classifier.

  3. ID3 algorithm - Wikipedia

    en.wikipedia.org/wiki/ID3_algorithm

    In decision tree learning, ID3 (Iterative Dichotomiser 3) is an algorithm invented by Ross Quinlan [1] used to generate a decision tree from a dataset. ID3 is the precursor to the C4.5 algorithm , and is typically used in the machine learning and natural language processing domains.

  4. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Decision tree learning is a method commonly used in data mining. [3] The goal is to create a model that predicts the value of a target variable based on several input variables. A decision tree is a simple representation for classifying examples.

  5. Decision tree - Wikipedia

    en.wikipedia.org/wiki/Decision_tree

    A decision tree is a flowchart-like structure in which each internal node represents a "test" on an attribute (e.g. whether a coin flip comes up heads or tails), each branch represents the outcome of the test, and each leaf node represents a class label (decision taken after computing all attributes).

  6. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  7. Logistic model tree - Wikipedia

    en.wikipedia.org/wiki/Logistic_model_tree

    In computer science, a logistic model tree (LMT) is a classification model with an associated supervised training algorithm that combines logistic regression (LR) and decision tree learning. [ 1 ] [ 2 ]

  8. AdaBoost - Wikipedia

    en.wikipedia.org/wiki/AdaBoost

    A boosted classifier is a classifier of the form = = where each is a weak learner that takes an object as input and returns a value indicating the class of the object. For example, in the two-class problem, the sign of the weak learner's output identifies the predicted object class and the absolute value gives the confidence in that classification.

  9. Information gain (decision tree) - Wikipedia

    en.wikipedia.org/wiki/Information_gain_(decision...

    The feature with the optimal split i.e., the highest value of information gain at a node of a decision tree is used as the feature for splitting the node. The concept of information gain function falls under the C4.5 algorithm for generating the decision trees and selecting the optimal split for a decision tree node. [1] Some of its advantages ...