Search results
Results From The WOW.Com Content Network
Muonium (/ m juː ˈ oʊ n i ə m /) is an exotic atom made up of an antimuon and an electron, [1] which was discovered in 1960 by Vernon W. Hughes [2] and is given the chemical symbol Mu. During the muon's 2.2 µs lifetime, muonium can undergo chemical reactions.
Plant nutrition is the study of the chemical elements and compounds necessary for plant growth and reproduction, plant metabolism and their external supply. In its absence the plant is unable to complete a normal life cycle, or that the element is part of some essential plant constituent or metabolite .
In particle physics, true muonium is a theoretically predicted exotic atom representing a bound state of an muon and an antimuon (μ + μ −). The existence of true muonium is well established theoretically within the Standard Model .
Nutrients in the soil are taken up by the plant through its roots, and in particular its root hairs.To be taken up by a plant, a nutrient element must be located near the root surface; however, the supply of nutrients in contact with the root is rapidly depleted within a distance of ca. 2 mm. [14] There are three basic mechanisms whereby nutrient ions dissolved in the soil solution are brought ...
The positive muon is also not attracted to the nucleus of atoms. Instead, it binds a random electron and with this electron forms an exotic atom known as muonium (mu) atom. In this atom, the muon acts as the nucleus. The positive muon, in this context, can be considered a pseudo-isotope of hydrogen with one ninth of the mass of the proton.
Plant stress research looks at the response of plants to limitations and excesses of the main abiotic factors (light, temperature, water and nutrients), and of other stress factors that are important in particular situations (e.g. pests, pathogens, or pollutants). Plant stress measurement usually focuses on taking measurements from living plants.
Due to the plants continuous fight against gravity, plants typically mature much more quickly than when grown in soil or other traditional hydroponic growing systems. [55] Because rotary hydroponic systems have a small size, they allow for more plant material to be grown per area of floor space than other traditional hydroponic systems.
For plants growing under steady state conditions, it is feasible to determine sugar-allocation by constructing a C-budget. This requires determination of the C-uptake by the whole plant during photosynthesis, and the C-losses of shoots and roots during respiration.