When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Stepwise regression - Wikipedia

    en.wikipedia.org/wiki/Stepwise_regression

    The main approaches for stepwise regression are: Forward selection, which involves starting with no variables in the model, testing the addition of each variable using a chosen model fit criterion, adding the variable (if any) whose inclusion gives the most statistically significant improvement of the fit, and repeating this process until none improves the model to a statistically significant ...

  3. One in ten rule - Wikipedia

    en.wikipedia.org/wiki/One_in_ten_rule

    In statistics, the one in ten rule is a rule of thumb for how many predictor parameters can be estimated from data when doing regression analysis (in particular proportional hazards models in survival analysis and logistic regression) while keeping the risk of overfitting and finding spurious correlations low. The rule states that one ...

  4. Logistic regression - Wikipedia

    en.wikipedia.org/wiki/Logistic_regression

    Logistic regression is a supervised machine learning algorithm widely used for binary classification tasks, such as identifying whether an email is spam or not and diagnosing diseases by assessing the presence or absence of specific conditions based on patient test results. This approach utilizes the logistic (or sigmoid) function to transform ...

  5. Iteratively reweighted least squares - Wikipedia

    en.wikipedia.org/wiki/Iteratively_reweighted...

    IRLS is used to find the maximum likelihood estimates of a generalized linear model, and in robust regression to find an M-estimator, as a way of mitigating the influence of outliers in an otherwise normally-distributed data set, for example, by minimizing the least absolute errors rather than the least square errors.

  6. Log-linear analysis - Wikipedia

    en.wikipedia.org/wiki/Log-linear_analysis

    Additionally, data should always be categorical. Continuous data can first be converted to categorical data, with some loss of information. With both continuous and categorical data, it would be best to use logistic regression. (Any data that is analysed with log-linear analysis can also be analysed with logistic regression.

  7. Comparison of statistical packages - Wikipedia

    en.wikipedia.org/wiki/Comparison_of_statistical...

    4 Regression. 5 Time series analysis. ... SAS Institute: 16.1 (July 2021 ()) No ... Logistic GLM LAD Stepwise Quantile Probit Cox

  8. MedCalc - Wikipedia

    en.wikipedia.org/wiki/MedCalc

    MedCalc includes basic parametric and non-parametric statistical procedures and graphs such as descriptive statistics, ANOVA, Mann–Whitney test, Wilcoxon test, χ 2 test, correlation, linear as well as non-linear regression, logistic regression, and multivariate statistics. [5]

  9. Multinomial logistic regression - Wikipedia

    en.wikipedia.org/.../Multinomial_logistic_regression

    Multinomial logistic regression is known by a variety of other names, including polytomous LR, [2] [3] multiclass LR, softmax regression, multinomial logit (mlogit), the maximum entropy (MaxEnt) classifier, and the conditional maximum entropy model.