Search results
Results From The WOW.Com Content Network
The overlap coefficient, [note 1] or Szymkiewicz–Simpson coefficient, [citation needed] [3] [4] [5] is a similarity measure that measures the overlap between two finite sets.It is related to the Jaccard index and is defined as the size of the intersection divided by the size of the smaller of two sets:
This is because elements of _ can be contained in other (with ) as well, and the -formula runs exactly through all possible extensions of the sets {_} with other , counting only for the set that matches the membership behavior of , if runs through all subsets of (as in the definition of ()).
In set theory, the union (denoted by ∪) of a collection of sets is the set of all elements in the collection. [1] It is one of the fundamental operations through which sets can be combined and related to each other.
This article lists mathematical properties and laws of sets, involving the set-theoretic operations of union, intersection, and complementation and the relations of set equality and set inclusion. It also provides systematic procedures for evaluating expressions, and performing calculations, involving these operations and relations.
A Venn diagram must contain all 2 n logically possible zones of overlap between its n curves, representing all combinations of inclusion/exclusion of its constituent sets. Regions not part of the set are indicated by coloring them black, in contrast to Euler diagrams, where membership in the set is indicated by overlap as well as color.
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
The algebra of sets is the set-theoretic analogue of the algebra of numbers. Just as arithmetic addition and multiplication are associative and commutative, so are set union and intersection; just as the arithmetic relation "less than or equal" is reflexive, antisymmetric and transitive, so is the set relation of "subset".
Jaccard distance is commonly used to calculate an n × n matrix for clustering and multidimensional scaling of n sample sets. This distance is a metric on the collection of all finite sets. [8] [9] [10] There is also a version of the Jaccard distance for measures, including probability measures.