Search results
Results From The WOW.Com Content Network
Strength depends upon material properties. The strength of a material depends on its capacity to withstand axial stress, shear stress, bending, and torsion.The strength of a material is measured in force per unit area (newtons per square millimetre or N/mm², or the equivalent megapascals or MPa in the SI system and often pounds per square inch psi in the United States Customary Units system).
The strength of materials is determined using various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus ...
Stress analysis is specifically concerned with solid objects. The study of stresses in liquids and gases is the subject of fluid mechanics.. Stress analysis adopts the macroscopic view of materials characteristic of continuum mechanics, namely that all properties of materials are homogeneous at small enough scales.
In the context to structural analysis, a structure refers to a body or system of connected parts used to support a load. Important examples related to Civil Engineering include buildings, bridges, and towers; and in other branches of engineering, ship and aircraft frames, tanks, pressure vessels, mechanical systems, and electrical supporting structures are important.
The theoretical strength can also be approximated using the fracture work per unit area, which result in slightly different numbers. However, the above derivation and final approximation is a commonly used metric for evaluating the advantages of a material's mechanical properties.
The characteristic strength is defined as the strength of the concrete below which not more than 5% of the test results are expected to fall. [ 16 ] For design purposes, this compressive strength value is restricted by dividing with a factor of safety, whose value depends on the design philosophy used.
The limit surfaces of the unified strength theory in principal stress space are usually a semi-infinite dodecahedron cone with unequal sides. The shape and size of the limiting dodecahedron cone depends on the parameter b and . The limit surfaces of UST and UYC are shown as follows.
The maximum stress criterion assumes that a material fails when the maximum principal stress in a material element exceeds the uniaxial tensile strength of the material. Alternatively, the material will fail if the minimum principal stress σ 3 {\displaystyle \sigma _{3}} is less than the uniaxial compressive strength of the material.