Search results
Results From The WOW.Com Content Network
Figure 1. Plots of quadratic function y = ax 2 + bx + c, varying each coefficient separately while the other coefficients are fixed (at values a = 1, b = 0, c = 0). A quadratic equation whose coefficients are real numbers can have either zero, one, or two distinct real-valued solutions, also called roots.
That is, h is the x-coordinate of the axis of symmetry (i.e. the axis of symmetry has equation x = h), and k is the minimum value (or maximum value, if a < 0) of the quadratic function. One way to see this is to note that the graph of the function f ( x ) = x 2 is a parabola whose vertex is at the origin (0, 0).
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Pages for logged out editors learn more
The quadratic equation on a number can be solved using the well-known quadratic formula, which can be derived by completing the square. That formula always gives the roots of the quadratic equation, but the solutions are expressed in a form that often involves a quadratic irrational number, which is an algebraic fraction that can be evaluated ...
The problem of constructing a regular pentagon is equivalent to the problem of constructing the roots of the equation z 5 − 1 = 0. One root of this equation is z 0 = 1 which corresponds to the point P 0 (1, 0). Removing the factor corresponding to this root, the other roots turn out to be roots of the equation z 4 + z 3 + z 2 + z + 1 = 0.
A similar but more complicated method works for cubic equations, which have three resolvents and a quadratic equation (the "resolving polynomial") relating and , which one can solve by the quadratic equation, and similarly for a quartic equation (degree 4), whose resolving polynomial is a cubic, which can in turn be solved. [14]
But if is substituted for in the original equation, the result is the invalid equation =. This counterintuitive result occurs because in the case where x = 0 {\displaystyle x=0} , multiplying both sides by x {\displaystyle x} multiplies both sides by zero, and so necessarily produces a true equation just as in the first example.
In geometry, Descartes' theorem states that for every four kissing, or mutually tangent, circles, the radii of the circles satisfy a certain quadratic equation. By solving this equation, one can construct a fourth circle tangent to three given, mutually tangent circles. The theorem is named after René Descartes, who stated it in 1643.
Ads
related to: quadratic equation practice problems pdf reddit