When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. S-matrix theory - Wikipedia

    en.wikipedia.org/wiki/S-matrix_theory

    But in the guise of string theory, S-matrix theory is still a popular approach to the problem of quantum gravity. The S-matrix theory is related to the holographic principle and the AdS/CFT correspondence by a flat space limit. The analog of the S-matrix relations in AdS space is the boundary conformal theory. [1] The most lasting legacy of the ...

  3. S-matrix - Wikipedia

    en.wikipedia.org/wiki/S-matrix

    The S-matrix is closely related to the transition probability amplitude in quantum mechanics and to cross sections of various interactions; the elements (individual numerical entries) in the S-matrix are known as scattering amplitudes. Poles of the S-matrix in the complex-energy plane are identified with bound states, virtual states or resonances.

  4. Correlation function (quantum field theory) - Wikipedia

    en.wikipedia.org/wiki/Correlation_function...

    In quantum field theory, correlation functions, often referred to as correlators or Green's functions, are vacuum expectation values of time-ordered products of field operators. They are a key object of study in quantum field theory where they can be used to calculate various observables such as S-matrix elements.

  5. Cluster decomposition - Wikipedia

    en.wikipedia.org/wiki/Cluster_decomposition

    By expanding the S-matrix into a sum of a product of connected S-matrix elements , which at the perturbative level are equivalent to connected Feynman diagrams, the cluster decomposition property can be restated as demanding that connected S-matrix elements must vanish whenever some of its clusters of particles are far apart from each other.

  6. LSZ reduction formula - Wikipedia

    en.wikipedia.org/wiki/LSZ_reduction_formula

    In quantum field theory, the Lehmann–Symanzik–Zimmermann (LSZ) reduction formula is a method to calculate S-matrix elements (the scattering amplitudes) from the time-ordered correlation functions of a quantum field theory.

  7. Path-ordering - Wikipedia

    en.wikipedia.org/wiki/Path-ordering

    The S-matrix in quantum field theory is an example of a time-ordered product. The S-matrix, transforming the state at t = −∞ to a state at t = +∞, can also be thought of as a kind of "holonomy", analogous to the Wilson loop. We obtain a time-ordered expression because of the following reason: We start with this simple formula for the ...

  8. Quantum Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Quantum_Fourier_transform

    In quantum computing, the quantum Fourier transform (QFT) is a linear transformation on quantum bits, and is the quantum analogue of the discrete Fourier transform.The quantum Fourier transform is a part of many quantum algorithms, notably Shor's algorithm for factoring and computing the discrete logarithm, the quantum phase estimation algorithm for estimating the eigenvalues of a unitary ...

  9. Schwinger–Dyson equation - Wikipedia

    en.wikipedia.org/wiki/Schwinger–Dyson_equation

    In his paper "The S-Matrix in Quantum electrodynamics", [1] Dyson derived relations between different S-matrix elements, or more specific "one-particle Green's functions", in quantum electrodynamics, by summing up infinitely many Feynman diagrams, thus working in a perturbative approach.

  1. Related searches s matrix theory in qft memory loss management in python example list of elements

    s matrix theorys-matrix quantum