When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Positive semidefinite - Wikipedia

    en.wikipedia.org/wiki/Positive_semidefinite

    In mathematics, positive semidefinite may refer to: Positive semidefinite function; Positive semidefinite matrix; Positive semidefinite quadratic form;

  3. Positive operator - Wikipedia

    en.wikipedia.org/wiki/Positive_operator

    In mathematics (specifically linear algebra, operator theory, and functional analysis) as well as physics, a linear operator acting on an inner product space is called positive-semidefinite (or non-negative) if, for every ⁡ (), , and , , where ⁡ is the domain of .

  4. Definite matrix - Wikipedia

    en.wikipedia.org/wiki/Definite_matrix

    In mathematics, a symmetric matrix with real entries is positive-definite if the real number is positive for every nonzero real column vector, where is the row vector transpose of . [1] More generally, a Hermitian matrix (that is, a complex matrix equal to its conjugate transpose) is positive-definite if the real number is positive for every nonzero complex column vector , where denotes the ...

  5. Gram matrix - Wikipedia

    en.wikipedia.org/wiki/Gram_matrix

    The Gram matrix is positive semidefinite, and every positive semidefinite matrix is the Gramian matrix for some set of vectors. The fact that the Gramian matrix is positive-semidefinite can be seen from the following simple derivation:

  6. Positive-definite function - Wikipedia

    en.wikipedia.org/wiki/Positive-definite_function

    Positive-definiteness arises naturally in the theory of the Fourier transform; it can be seen directly that to be positive-definite it is sufficient for f to be the Fourier transform of a function g on the real line with g(y) ≥ 0.

  7. Square root of a matrix - Wikipedia

    en.wikipedia.org/wiki/Square_root_of_a_matrix

    A positive semidefinite matrix A can also have many matrices B such that =. However, A always has precisely one square root B that is both positive semidefinite and symmetric. In particular, since B is required to be symmetric, B = B T {\displaystyle B=B^{\textsf {T}}} , so the two conditions A = B B {\displaystyle A=BB} or A = B T B ...

  8. Diagonally dominant matrix - Wikipedia

    en.wikipedia.org/wiki/Diagonally_dominant_matrix

    A Hermitian diagonally dominant matrix with real non-negative diagonal entries is positive semidefinite. This follows from the eigenvalues being real, and Gershgorin's circle theorem. If the symmetry requirement is eliminated, such a matrix is not necessarily positive semidefinite. For example, consider

  9. Laplacian matrix - Wikipedia

    en.wikipedia.org/wiki/Laplacian_matrix

    L is positive-semidefinite (that is for all ). This can be seen from the fact that the Laplacian is symmetric and diagonally dominant. L is an M-matrix (its off-diagonal entries are nonpositive, yet the real parts of its eigenvalues are nonnegative). Every row sum and column sum of L is zero. Indeed, in the sum, the degree of the vertex is ...