Ad
related to: superconductivity of materials in chemistry ppt downloadstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
X:Y means material X doped with element Y, T C is the highest reported transition temperature in kelvins and H C is a critical magnetic field in tesla. "BCS" means whether or not the superconductivity is explained within the BCS theory.
Several physical properties of superconductors vary from material to material, such as the critical temperature, the value of the superconducting gap, the critical magnetic field, and the critical current density at which superconductivity is destroyed. On the other hand, there is a class of properties that are independent of the underlying ...
In such materials, pinning is due to impurities that break the translational symmetry of the CDW with respect to φ. [18] The simplest model treats the pinning as a sine-Gordon potential of the form u ( φ ) = u 0 [1 – cos φ ], while the electric field tilts the periodic pinning potential until the phase can slide over the barrier above the ...
Conventional superconductors are materials that display superconductivity as described by BCS theory or its extensions. This is in contrast to unconventional superconductors, which do not. Conventional superconductors can be either type-I or type-II. Most elemental superconductors are conventional. Niobium and vanadium are type-II, while most ...
An organic superconductor is a synthetic organic compound that exhibits superconductivity at low temperatures.. As of 2007 the highest achieved critical temperature for an organic superconductor at standard pressure is 33 K (−240 °C; −400 °F), observed in the alkali-doped fullerene RbCs 2 C 60.
Yttrium barium copper oxide (YBCO) is a family of crystalline chemical compounds that display high-temperature superconductivity; it includes the first material ever discovered to become superconducting above the boiling point of liquid nitrogen [77 K (−196.2 °C; −321.1 °F)] at about 93 K (−180.2 °C; −292.3 °F).
High-temperature superconductivity (high-T c or HTS) is superconductivity in materials with a critical temperature (the temperature below which the material behaves as a superconductor) above 77 K (−196.2 °C; −321.1 °F), the boiling point of liquid nitrogen. [1]
The first time that A15 structure was observed was in 1931 when an electrolytically deposited layer of tungsten was examined. [2] Discussion of whether the β-tungsten structure is an allotrope of tungsten or the structure of a tungsten suboxide was long-standing, but since the 1950s there has been many publications showing that the material is a true allotrope of tungsten.