Ads
related to: superconductivity engineering physics
Search results
Results From The WOW.Com Content Network
Superconductivity is a set of physical properties ... This temperature jump is of particular engineering ... The Physics of Organic Superconductors and ...
It commemorates the Theory of Superconductivity developed here by John Bardeen and his students, for which they won a Nobel Prize for Physics in 1972. Microscopic theory of superconductivity In physics , the Bardeen–Cooper–Schrieffer ( BCS ) theory (named after John Bardeen , Leon Cooper , and John Robert Schrieffer ) is the first ...
However, currently known high-temperature superconductors are brittle ceramics that are expensive to manufacture and not easily formed into wires or other useful shapes. [4] Therefore, the applications for HTS have been where it has some other intrinsic advantage, e.g. in: low thermal loss current leads for LTS devices (low thermal conductivity),
The history of superconductivity began with Dutch physicist Heike Kamerlingh Onnes's discovery of superconductivity in mercury in 1911. Since then, many other superconducting materials have been discovered and the theory of superconductivity has been developed. These subjects remain active areas of study in the field of condensed matter physics.
The Meissner state breaks down when the applied magnetic field is too strong. Superconductors can be divided into two classes according to how this breakdown occurs. In type-I superconductors, superconductivity is abruptly destroyed when the strength of the applied field rises above a critical value H c.
The table below shows some of the parameters of common superconductors. X:Y means material X doped with element Y, T C is the highest reported transition temperature in kelvins and H C is a critical magnetic field in tesla. "BCS" means whether or not the superconductivity is explained within the BCS theory.
In condensed matter physics, a Cooper pair or BCS pair (Bardeen–Cooper–Schrieffer pair) is a pair of electrons (or other fermions) bound together at low temperatures in a certain manner first described in 1956 by American physicist Leon Cooper. [1]
High-temperature superconductivity (high-T c or HTS) is superconductivity in materials with a critical temperature (the temperature below which the material behaves as a superconductor) above 77 K (−196.2 °C; −321.1 °F), the boiling point of liquid nitrogen. [1]