When.com Web Search

  1. Ad

    related to: what are christoffel symbols called

Search results

  1. Results From The WOW.Com Content Network
  2. Christoffel symbols - Wikipedia

    en.wikipedia.org/wiki/Christoffel_symbols

    Most of the algebraic properties of the Christoffel symbols follow from their relationship to the affine connection; only a few follow from the fact that the structure group is the orthogonal group O(m, n) (or the Lorentz group O(3, 1) for general relativity). Christoffel symbols are used for performing practical calculations.

  3. Levi-Civita connection - Wikipedia

    en.wikipedia.org/wiki/Levi-Civita_connection

    The Levi-Civita connection is named after Tullio Levi-Civita, although originally "discovered" by Elwin Bruno Christoffel.Levi-Civita, [1] along with Gregorio Ricci-Curbastro, used Christoffel's symbols [2] to define the notion of parallel transport and explore the relationship of parallel transport with the curvature, thus developing the modern notion of holonomy.

  4. Greek letters used in mathematics, science, and engineering

    en.wikipedia.org/wiki/Greek_letters_used_in...

    the Christoffel symbols that describe components of a metric connection; the stack alphabet in the formal definition of a pushdown automaton, or the tape-alphabet in the formal definition of a Turing machine; the Feferman–Schütte ordinal Γ 0; represents: the specific weight of substances; the lower incomplete gamma function

  5. Normal coordinates - Wikipedia

    en.wikipedia.org/wiki/Normal_coordinates

    In a normal coordinate system, the Christoffel symbols of the connection vanish at the point p, thus often simplifying local calculations. In normal coordinates associated to the Levi-Civita connection of a Riemannian manifold , one can additionally arrange that the metric tensor is the Kronecker delta at the point p , and that the first ...

  6. Curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Curvilinear_coordinates

    In other words, the basis vectors of the coordinates may vary in time at fixed positions, or they may vary with position at fixed times, or both. When equations of motion are expressed in terms of any non-inertial coordinate system (in this sense), extra terms appear, called Christoffel symbols.

  7. Solving the geodesic equations - Wikipedia

    en.wikipedia.org/wiki/Solving_the_geodesic_equations

    On an n-dimensional Riemannian manifold, the geodesic equation written in a coordinate chart with coordinates is: + = where the coordinates x a (s) are regarded as the coordinates of a curve γ(s) in and are the Christoffel symbols.

  8. Geodesics in general relativity - Wikipedia

    en.wikipedia.org/wiki/Geodesics_in_general...

    The full geodesic equation is + = where s is a scalar parameter of motion (e.g. the proper time), and are Christoffel symbols (sometimes called the affine connection coefficients or Levi-Civita connection coefficients) symmetric in the two lower indices.

  9. Connection (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Connection_(mathematics)

    Some other normalization conditions must be imposed, usually depending on the type of geometry under consideration. In Riemannian geometry, the Levi-Civita connection requires compatibility of the Christoffel symbols with the metric (as well as a certain symmetry condition). With these normalizations, the connection is uniquely defined.