Search results
Results From The WOW.Com Content Network
The skewness value can be positive, zero, negative, or undefined. For a unimodal distribution (a distribution with a single peak), negative skew commonly indicates that the tail is on the left side of the distribution, and positive skew indicates that the tail is on the right. In cases where one tail is long but the other tail is fat, skewness ...
In statistics and probability theory, the nonparametric skew is a statistic occasionally used with random variables that take real values. [1] [2] It is a measure of the skewness of a random variable's distribution—that is, the distribution's tendency to "lean" to one side or the other of the mean.
Thus the skewed generalized t distribution can be highly skewed as well as symmetric. If − 1 < λ < 0 {\displaystyle -1<\lambda <0} , then the distribution is negatively skewed. If 0 < λ < 1 {\displaystyle 0<\lambda <1} , then the distribution is positively skewed.
Real skew-symmetric matrices are normal matrices (they commute with their adjoints) and are thus subject to the spectral theorem, which states that any real skew-symmetric matrix can be diagonalized by a unitary matrix. Since the eigenvalues of a real skew-symmetric matrix are imaginary, it is not possible to diagonalize one by a real matrix.
It is customary to transform data logarithmically to fit symmetrical distributions (like the normal and logistic) to data obeying a distribution that is positively skewed (i.e. skew to the right, with mean > mode, and with a right hand tail that is longer than the left hand tail), see lognormal distribution and the loglogistic distribution. A ...
The negative hypergeometric distribution, a distribution which describes the number of attempts needed to get the nth success in a series of Yes/No experiments without replacement. The Poisson binomial distribution, which describes the number of successes in a series of independent Yes/No experiments with different success probabilities.
Like all measures of skewness, the medcouple is positive for distributions that are skewed to the right, negative for distributions skewed to the left, and zero for symmetrical distributions. In addition, the values of the medcouple are bounded by 1 in absolute value.
The normal distribution is symmetric about its mean, and is non-zero over the entire real line. As such it may not be a suitable model for variables that are inherently positive or strongly skewed, such as the weight of a person or the price of a share.