When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Nuclear binding energy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_binding_energy

    The net binding energy of a nucleus is that of the nuclear attraction, minus the disruptive energy of the electric force. As nuclei get heavier than helium, their net binding energy per nucleon (deduced from the difference in mass between the nucleus and the sum of masses of component nucleons) grows more and more slowly, reaching its peak at iron.

  3. Binding energy - Wikipedia

    en.wikipedia.org/wiki/Binding_energy

    The atomic binding energy of the atom is the energy required to disassemble an atom into free electrons and a nucleus. [4] It is the sum of the ionization energies of all the electrons belonging to a specific atom. The atomic binding energy derives from the electromagnetic interaction of the electrons with the nucleus, mediated by photons.

  4. Semi-empirical mass formula - Wikipedia

    en.wikipedia.org/wiki/Semi-empirical_mass_formula

    Magnitude of the pairing term in the total binding energy for even–even and odd–odd nuclei, as a function of mass number. Two fits are shown (blue and red line). The pairing term (positive for even–even and negative for odd–odd nuclei) was derived from binding energy data. [6]

  5. Mass excess - Wikipedia

    en.wikipedia.org/wiki/Mass_excess

    The mass excess of a nuclide is the difference between its actual mass and its mass number in daltons.It is one of the predominant methods for tabulating nuclear mass. The mass of an atomic nucleus is well approximated (less than 0.1% difference for most nuclides) by its mass number, which indicates that most of the mass of a nucleus arises from mass of its constituent protons and neutrons.

  6. Gravitational binding energy - Wikipedia

    en.wikipedia.org/wiki/Gravitational_binding_energy

    This is roughly equal to one week of the Sun's total energy output. It is 37.5 MJ/kg, 60% of the absolute value of the potential energy per kilogram at the surface. The actual depth-dependence of density, inferred from seismic travel times (see Adams–Williamson equation), is given in the Preliminary Reference Earth Model (PREM). [4]

  7. Bond energy - Wikipedia

    en.wikipedia.org/wiki/Bond_energy

    The bond dissociation energy (enthalpy) [4] is also referred to as bond disruption energy, bond energy, bond strength, or binding energy (abbreviation: BDE, BE, or D). It is defined as the standard enthalpy change of the following fission: R—X → R + X. The BDE, denoted by Dº(R—X), is usually derived by the thermochemical equation,

  8. Activation energy - Wikipedia

    en.wikipedia.org/wiki/Activation_energy

    This energy is known as Binding Energy. Upon binding to a catalyst, substrates partake in numerous stabilizing forces while within the active site (e.g. hydrogen bonding or van der Waals forces ). Specific and favorable bonding occurs within the active site until the substrate forms to become the high-energy transition state.

  9. Valley of stability - Wikipedia

    en.wikipedia.org/wiki/Valley_of_stability

    The negative of binding energy per nucleon for nuclides with atomic mass number 125 plotted as a function of atomic number. The profile of binding energy across the valley of stability is roughly a parabola. Tellurium-125 (52 Te) is stable, while antimony-125 (51 Sb) is unstable to β− decay.